首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of ionizing radiation on osteoblast-like cells in vitro   总被引:9,自引:0,他引:9  
The well-described detrimental effects of ionizing radiation on the regeneration of bone within a fracture site include decreased osteocyte number, suppressed osteoblast activity, and diminished vascularity. However, the biologic mechanisms underlying osteoradionecrosis and the impaired fracture healing of irradiated bone remain undefined. Ionizing radiation may decrease successful osseous repair by altering cytokine expression profiles resulting from or leading to a change in the osteoblastic differentiation state. These changes may, in turn, cause alterations in osteoblast proliferation and extracellular matrix formation. The purpose of this study was to investigate the effects of ionizing radiation on the proliferation, maturation, and cytokine production of MC3T3-E1 osteoblast-like cells in vitro. Specifically, the authors examined the effects of varying doses of ionizing radiation (0, 40, 400, and 800 cGy) on the expression of transforming growth factor-beta1 (TGF-beta1), vascular endothelial growth factor (VEGF), and alkaline phosphatase. In addition, the authors studied the effects of ionizing radiation on MC3T3-E1 cellular proliferation and the ability of conditioned media obtained from control and irradiated cells to regulate the proliferation of bovine aortic endothelial cells. Finally, the authors evaluated the effects of adenovirus-mediated TGF-beta1 gene therapy in an effort to "rescue" irradiated osteoblasts. The exposure of osteoblast-like cells to ionizing radiation resulted in dose-dependent decreases in cellular proliferation and promoted cellular differentiation (i.e., increased alkaline phosphatase production). Additionally, ionizing radiation caused dose-dependent decreases in total TGF-beta1 and VEGF protein production. Decreases in total TGF-beta1 production were due to a decrease in TGF-beta1 production per cell. In contrast, decreased total VEGF production was secondary to decreases in cellular proliferation, because the cellular production of VEGF by irradiated osteoblasts was moderately increased when VEGF production was corrected for cell number. Additionally, in contrast to control cells (i.e., nonirradiated), conditioned media obtained from irradiated osteoblasts failed to stimulate the proliferation of bovine aortic endothelial cells. Finally, transfection of control and irradiated cells with a replication-deficient TGF-beta1 adenovirus before irradiation resulted in an increase in cellular production of TGF-beta1 protein and VEGF. Interestingly, this intervention did not alter the effects of irradiation on cellular proliferation, which implies that alterations in TGF-beta1 expression do not underlie the deficiencies noted in cellular proliferation. The authors hypothesize that ionizing radiation-induced alterations in the cytokine profiles and differentiation states of osteoblasts may provide insights into the cellular mechanisms underlying osteoradionecrosis and impaired fracture healing.  相似文献   

3.
Shi YF  Fong CC  Zhang Q  Cheung PY  Tzang CH  Wu RS  Yang M 《FEBS letters》2007,581(2):203-210
Hypoxia is a common environmental stress factor and is also associated with various physiological and pathological conditions such as fibrogenesis. The activation of hepatic stellate cells (HSCs) is the key event in the liver fibrogenesis. In this study, the behavior of human HSCs LX-2 in low oxygen tension (1% O2) was analyzed. Upon hypoxia, the expression of HIF-1alpha and VEGF gene was induced. The result of Western blotting showed that the expression of alpha-SMA was increased by hypoxic stimulation. Furthermore, the expression of MMP-2 and TIMP-1 genes was increased. Hypoxia also elevated the protein expression of the collagen type I in LX-2 cells. The analysis of TGF-beta/Smad signaling pathway showed that hypoxia potentiated the expression of TGF-beta1 and the phosphorylation status of Smad2. Gene expression profiles of LX-2 cells induced by hypoxia were obtained by using cDNA microarray technique.  相似文献   

4.
5.
Understanding the mechanisms by which adult stem cells produce growth factors may represent an important way to optimize their beneficial paracrine and autocrine effects. Components of the wound milieu may stimulate growth factor production to promote stem cell-mediated repair. We hypothesized that tumor necrosis factor-alpha (TNF-alpha), endotoxin (LPS), or hypoxia may activate human mesenchymal stem cells (MSCs) to increase release of vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), insulin-like growth factor 1 (IGF-1), or hepatocyte growth factor (HGF) and that nuclear factor-kappa B (NF kappa B), c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) mediates growth factor production from human MSCs. To study this, human MSCs were harvested, passaged, divided into four groups (100,000 cells, triplicates) and treated as follows: 1) with vehicle; 2) with stimulant alone [24 h LPS (200 ng/ml), 24 h TNF-alpha (50 ng/ml), or 24 h hypoxia (1% O2)]; 3) with inhibitor alone [NF kappa B (PDTC, 1 mM), JNK (TI-JIP, 10 microM), or ERK (ERK Inhibitor II, 25 microM)]; and 4) with stimulant and the various inhibitors. After 24 h incubation, MSC activation was determined by measuring supernatants for VEGF, FGF2, IGF-1, or HGF (ELISA). TNF-alpha, LPS, and hypoxia significantly increased human MSC VEGF, FGF2, HGF, and IGF-1 production versus controls. Stem cells exposed to injury demonstrated increased activation of NF kappa B, ERK, and JNK. VEGF, FGF2, and HGF expression was significantly reduced by NF kappa B inhibition (50% decrease) but not ERK or JNK inhibition. Moreover, ERK, JNK, and NF kappa B inhibitor alone did not activate MSC VEGF expression over controls. Various stressors activate human MSCs to increase VEGF, FGF2, HGF, and IGF-1 expression, which depends on an NFkB mechanism.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell growth and permeability factor highly expressed in rodent alveolar epithelium after injury and repair. To investigate VEGF synthesis in human lung epithelial cells, we examined VEGF expression by cultured cells under basal conditions and after cytokine treatment or oxidative stress. Basal VEGF expression was detected in transformed human epithelial cell lines (A549 and 1HAEo-) and in primary human bronchial epithelial cells with RT-PCR, Western blot, and immunocytochemistry. Among the cytokines tested, only transforming growth factor-beta1 increased the levels of excreted VEGF(165) as measured by ELISA. Under hypoxia (0% O(2) for 24 h), the VEGF(165) level increased fivefold, and this effect was O(2) concentration dependent. VEGF concentrations in the medium of all the cell types studied reached values similar to those found in bronchoalveolar lavage fluids from normal patients. Endothelial cells (human umbilical vein endothelial cells) exposed to conditioned medium from primary bronchial epithelial cell cultures showed an increased growth rate, which was inhibited in the presence of a specific neutralizing antibody to VEGF. These results suggest that lung epithelial cells participate in the endothelial repair and angiogenesis that follow lung injury through the synthesis of VEGF.  相似文献   

7.
8.
9.
Transforming growth factor-beta (TGF-beta) is known phenomenologically as a negative regulator of several functions of mouse bone marrow macrophages. The studies reported here extend this list by showing that TGF-beta can suppress cytolytic activity of mouse bone marrow culture-derived macrophages that already have become activated by IFN-gamma and LPS for tumor cell killing, as well as confirm that this cytokine can interfere with the induction of activation. Suppression was caused by a shift in the dose response curve for IFN-gamma rather than absolute inhibition; the 50% effective dose for IFN-gamma was increased approximately fourfold by treatment with TGF-beta. TGF-beta also decreased the absolute number of IFN-gamma R on the surfaces of pretreated macrophages by approximately 30 to 35%, without altering the affinity with which IFN-gamma bound. The increased concentration of IFN-gamma needed to produce the higher level of receptor occupancy explained the observed shift in the IFN-gamma dose response curve. These results suggest that TGF-beta mediates its negative regulatory effects on macrophage activation by interfering with coupling of the IFN-gamma R to the pathways that induce and maintain macrophage activation for tumor cell killing. Such effects are consistent with the view that TGF-beta is a negative regulator of macrophage activation for tumor cell killing. Because of this fact, neoplastic cells that secrete this cytokine may have a distinct survival advantage.  相似文献   

10.
11.
12.
Increase in size and number of bronchial blood vessels as well as hyperaemia are factors that contribute to airway wall remodelling in patients with chronic airway diseases, such as asthma and chronic obstructive pulmonary diseases (COPD). Expression of transforming growth factor beta 1 (TGF-beta 1), a multifunctional cytokine as well as vascular endothelial growth factor (VEGF), a key angiogenic molecule, has been shown in the inflammed airways in patients with chronic airway diseases. TGF-beta 1 has been implicated in the regulation of extracellular matrix, leading to airway remodelling in patients with chronic airway diseases. However, the role of TGF-beta 1 in regulating VEGF expression in patients with chronic airway diseases, as well as the underlying mechanisms are not yet well established. We investigated whether TGF-beta 1 stimulates VEGF expression in vitro and hence could influence vascular remodelling. Cultured human airway smooth muscle cells (HASMC) were serum deprived for 60 h before incubation with 5ng/ml of TGF-beta 1 for different time points. Control cells received serum-free culture medium. TGF-beta 1 treatment resulted in time dependent HASMC cell proliferation with maximal values for DNA biosynthesis at 24 h and cell number at 48 h. Northern blot analysis of VEGF mRNA expression showed increased levels in cells treated with TGF-beta 1 for 4 to 8 h. TGF-beta 1 also induced a time-dependent release of VEGF proteins in the conditioned medium after 48 h of treatment. Furthermore, the ability of HASMC-released VEGF proteins to induce human umbilical vein endothelial cells proliferation was inhibited by VEGF receptor antagonist, confirming that TGF-beta 1 induced VEGF was biologically active. We conclude that TGF-beta 1 in addition to an extracellular matrix regulator also could play a key role in bronchial angiogenesis and vascular remodelling via VEGF pathway in asthma.  相似文献   

13.
Fibrosis is an important component of large conduit artery disease in hypertension. The endogenous tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory and antifibrotic effects in the heart and kidney. However, it is not known whether Ac-SDKP has an anti-inflammatory and antifibrotic effect on conduit arteries such as the aorta. We hypothesize that in ANG II-induced hypertension Ac-SDKP prevents aortic fibrosis and that this effect is associated with decreased protein kinase C (PKC) activation, leading to reduced oxidative stress and inflammation and a decrease in the profibrotic cytokine transforming growth factor-beta1 (TGF-beta1) and phosphorylation of its second messenger Smad2. To test this hypothesis we used rats with ANG II-induced hypertension and treated them with either vehicle or Ac-SDKP. In this hypertensive model we found an increased collagen deposition and collagen type I and III mRNA expression in the aorta. These changes were associated with increased PKC activation, oxidative stress, intercellular adhesion molecule (ICAM)-1 mRNA expression, and macrophage infiltration. TGF-beta1 expression and Smad2 phosphorylation also increased. Ac-SDKP prevented these effects without decreasing blood pressure or aortic hypertrophy. Ac-SDKP also enhanced expression of inhibitory Smad7. These data indicate that in ANG II-induced hypertension Ac-SDKP has an aortic antifibrotic effect. This effect may be due in part to inhibition of PKC activation, which in turn could reduce oxidative stress, ICAM-1 expression, and macrophage infiltration. Part of the effect of Ac-SDKP could also be due to reduced expression of the profibrotic cytokine TGF-beta1 and inhibition of Smad2 phosphorylation.  相似文献   

14.
During follicle growth swine granulosa cells are physiologically exposed to a progressive oxygen shortage. It has already been shown that hypoxia stimulates angiogenesis through an increase of VEGF production, however, despite considerable progress in the understanding of the final events induced by cellular hypoxia, the signal transduction pathway remains elusive. Recent evidence suggest a role for Reactive Oxygen Species (ROS) as hypoxia signal transducer. Granulosa cells were isolated from pig follicles (> 5 mm) and cultured for 18 h in normoxic (19% O2), hypoxic (5% O2) or anoxic (1% O2) conditions. Following the incubation ROS (O2- and H2O2) production and the activity of scavenging enzymes (SOD, catalase and peroxidase) were determined. It was apparent from our data that ROS generation was reduced by hypoxia. On the contrary, SOD and peroxidase, but not catalase, increased their activity. Further studies are needed to verify whether ROS are involved in signalling hypoxia.  相似文献   

15.
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic mitogen. However, chronic hypoxia is generally not found to increase mammalian skeletal muscle capillarity. We sought to determine the effect of chronic hypoxia (8 wk, inspired O2 fraction = 0.12) on skeletal muscle gene expression of VEGF, its receptors (flt-1 and flk-1), basic fibroblast growth factor, and transforming growth factor-beta1. Wistar rats were exposed to chronic hypoxia (n = 12) or room air (n = 12). After the exposure period, six animals from each group were subjected to a single 1-h treadmill exercise bout (18 m/min on a 10 degrees incline) in room air while the remaining six animals served as rest controls. Morphological analysis revealed that chronic hypoxia did not increase skeletal muscle capillarity. Northern blot analyses showed that chronic hypoxia decreased resting VEGF, flt-1, and flk-1 mRNA by 23, 68, and 42%, respectively (P < 0.05). The VEGF mRNA response to exercise was also decreased (4.1- and 2.7-fold increase in room air and chronic hypoxia, respectively, P < 0.05). In contrast, neither transforming growth factor-beta1 nor basic fibroblast growth factor mRNA was significantly altered by chronic hypoxia. In conclusion, prolonged exposure to hypoxia attenuated gene expression of VEGF and its receptors flt-1 and flk-1 in rat gastrocnemius muscle. These findings may provide an explanation for the lack of mammalian skeletal muscle angiogenesis that is observed after chronic hypoxia.  相似文献   

16.
17.
Vascular Endothelial Growth Factor (VEGF) plays a pivotal role in the physiological ovarian angiogenic process: its production appears to be stimulated by the hypoxic environment which takes place during follicle development. Recently, epigallocatechin-3-gallate (EGCG) from green tea has been used in livestock nutrition as an alternative to antibiotics. However, despite many potential benefits of EGCG consumption, it is also important to get an insight on the possible reproductive-related consequences of feeding supplementation: in fact this substance has been found to inhibit angiogenesis, a process fundamental for follicle development. Therefore, we evaluated the effect of EGCG (5 and 50 microg/ml) on the production of the main angiogenetic factor, VEGF, by swine granulosa cells cultured in normoxia (19% O2), partial (5% O2) or total hypoxia (1% O2). In addition, we studied the effect of the catechin on cell proliferation. Our data demonstrate that both partial and total hypoxia stimulated VEGF production. EGCG reduced VEGF production independently of the O2 condition: 50 microM was the most effective doses. Granulosa cell proliferation was inhibited by EGCG even if only by the highest concentration. This effect might possibly be due to the decrease induced in VEGF production. Therefore feeding supplementation with EGCG should be carefully considered.  相似文献   

18.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

19.
Murine sclerodermatous graft-vs-host disease (Scl GVHD) models human scleroderma, with prominent skin thickening, lung fibrosis, and up-regulation of cutaneous collagen mRNA. Fibrosis in Scl GVHD may be driven by infiltrating TGF-beta1-producing mononuclear cells. Here we characterize the origin and types of those cutaneous effector cells, the cytokine and chemokine environments, and the effects of anti-TGF-beta Ab on skin fibrosis, immune cell activation markers, and collagen and cytokine synthesis. Donor cells infiltrating skin in Scl GVHD increase significantly at early time points post-transplantation and are detectable by PCR analysis of Y-chromosome sequences when female mice are transplanted with male cells. Cutaneous monocyte/macrophages and T cells are the most numerous cells in Scl GVHD compared with syngeneic controls. These immune cells up-regulate activation markers (MHC class II I-A(d) molecules and class A scavenger receptors), suggesting Ag presentation by cutaneous macrophages in early fibrosing disease. Early elevated cutaneous mRNA expression of TGF-beta1, but not TGF-beta2 or TGF-beta3, and elevated C-C chemokines macrophage chemoattractant protein-1, macrophage inflammatory protein-1alpha, and RANTES precede subsequent skin and lung fibrosis. Therefore, TGF-beta1-producing donor mononuclear cells may be critical effector cells, and C-C chemokines may play important roles in the initiation of Scl GVHD. Abs to TGF-beta prevent Scl GVHD by effectively blocking the influx of monocyte/macrophages and T cells into skin and by abrogating up-regulation of TGF-beta1, thereby preventing new collagen synthesis. The Scl GVHD model is valuable for testing new interventions in early fibrosing diseases, and chemokines may be new potential targets in scleroderma.  相似文献   

20.
Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-beta(1) (TGF-beta(1)) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O(2) fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-beta(1), and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA (P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P < 0.05), absent TGF-beta(1) and flt-1 mRNA responses to exercise, and an approximately threefold (P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号