首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
胸腺嘧啶乙二醇(thymine glycol,Tg)是常见的氧化性DNA损伤碱基之一。DNA中的Tg能够分别阻止DNA聚合酶和RNA聚合酶进行DNA复制和转录,导致相应的生物学过程终止,进而会引起细胞的死亡,因此DNA中的Tg需要被修复。核酸内切酶Ⅲ(endonuclease Ⅲ,EndoⅢ)是一种双功能DNA糖苷酶,能够切除DNA中的Tg,从而启动碱基切除修复途径进行修复DNA中的Tg。细菌、古菌和真核生物的基因组序列中均存在有EndoⅢ蛋白的编码基因。目前,源自于细菌和真核生物的EndoⅢ已有较多的研究,而古菌EndoⅢ的研究相对较少。基于目前已有的极端嗜热古菌EndoⅢ的研究报道,本文综述了极端嗜热古菌EndoⅢ的研究进展,并展望了今后的研究方向。  相似文献   

2.
摘要:【目的】嗜高温微生物面临dC脱氨基生成dU损伤的巨大压力,鉴定嗜酸嗜热古菌S.acidocaldarius来源的尿嘧啶DNA糖苷酶(UDG)切除dU损伤的酶学活性。【方法】重组表达来源于S.acidocaldarius的IV和V型UDG,经亲和纯化得到电泳纯重组蛋白。然后利用人工合成的dU(deoxyuracil)修饰寡核苷酸片段作为底物,体外鉴定两种重组UDG 的酶学特性。【结果】来源于S.acidocaldarius的IV和V型重组UDG具有相似的酶学特性。IV型UDG催化效率更高,比活性是V型重组UDG的750倍左右。作为来自嗜热微生物 的蛋白,S.acidocaldarius的IV和V型UDG的最适反应温度为65-75℃。【结论】IV型UDG比V型UDG水解dU碱基和脱氧核糖之间糖苷键的能力更强。  相似文献   

3.
李玉婷  史昊强  张立奎 《微生物学报》2019,59(10):1889-1896
极端嗜热古菌由于生活在高温环境,其基因组DNA面临着严重的挑战,因此,它们如何维持其基因组稳定是本研究领域最为关注的科学问题之一。极端嗜热古菌具有与常温微生物相似的自发突变频率,暗示着它们比常温微生物具有更加有效的DNA修复体系进行修复高温所造成的基因组DNA损伤。目前,极端嗜热古菌DNA修复的分子机制尚不清楚。核酸内切酶在DNA修复途径中发挥着重要的作用。基因组序列显示极端嗜热古菌编码多种DNA修复核酸内切酶,但是其研究尚处于初期阶段。本文综述了极端嗜热古菌DNA修复核酸内切酶Nuc S、Endo V、Endo Q、XPF和Hjc的研究进展,并对今后的研究提出了展望。  相似文献   

4.
施静茹  张立奎 《微生物学报》2023,63(4):1318-1328
RecJ蛋白属于aspartate-histidine-histidine (DHH)磷酸酯酶超家族,存在于细菌、真核生物和古菌中。细菌RecJ蛋白是一种5′→3′ssDNA外切酶,参与错配修复、同源重组、碱基切除修复等生物学过程。真核生物cell division cycle 45 (Cdc45)蛋白是细菌RecJ核酸酶的同源物,但不具有核酸酶活性。Cdc45蛋白能够与minichromosomemaintenance(MCM)和Go-Ichi-Ni-San(GINS)形成Cdc45-MCM-GINS (CMG)复合物,是真核生物DNA复制的重要组分。在古菌中,几乎所有基因组已测序的古菌均编码一种或多种RecJ蛋白同源物。与细菌RecJ核酸酶不同,古菌RecJ蛋白具有多样化的核酸酶活性,并且能够与MCM和GINS形成类似于真核生物CMG的复合物。因此,古菌RecJ蛋白是参与古菌DNA复制、修复和重组的重要成分。基于目前古菌RecJ蛋白的研究报道,本文综述了古菌RecJ蛋白的活性、结构与功能方面的研究进展,聚焦于不同古菌RecJ蛋白以及它们与细菌RecJ核酸酶和真核生物RecJ同源物的...  相似文献   

5.
RecA/Rad51/RadA家族蛋白是细胞内重要的重组修复蛋白,在功能上非常保守.研究发现在细菌、真核生物、甲烷古菌和嗜盐古菌细胞内RecA/Rad51/RadA均可以受紫外线辐射诱导转录.而对极端嗜热古菌中的RadA辐射可诱导性仍存在争议.通过体外表达极端嗜热古菌Sulfolobus tokodaii的RadA蛋白,制备抗体,利用免疫学方法并结合RT-PCR分析,对嗜热古菌S.tokodaii中RadA的辐射诱导进行了研究.经过100J/m2和200J/m2 UV辐照处理,radA基因的转录分别上调了2倍和3倍,同时RadA蛋白的表达分别上升了1.5倍和1倍.实验结果表明S.tokodaii中RadA可以被紫外线辐射诱导表达,证实了极端嗜热古菌S.tokodaii细胞中存在DNA损伤诱导反应的观点.  相似文献   

6.
古菌(Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1],大多生活在极端或特殊环境,主要包括产甲烷古菌(Methanogenic Achaea)、极端嗜盐古菌(Extremely Halophilic Archaea)和极端嗜热古菌(Extremely Thermophilic Archaea)等三大类.极端古菌是极端环境微生物的重要成员,也是极端环境微生物资源开发的重要领域.其中,嗜盐古菌可产生一类蛋白类抗生素,称为嗜盐菌素(halocin).  相似文献   

7.
超嗜热古菌能够生活在80℃以上的高温环境中,它们的耐热性已经成为当前研究的热点之一。以往对超嗜热菌的认识多集中于蛋白质的耐热性,而很少有关于基因组热稳定性的综述文章。综述了当前对超嗜热古菌的基因组稳定性以及DNA损伤识别机制的研究进展,以期更好地了解超嗜热古菌的耐热机制。  相似文献   

8.
李臻  宋庆浩  徐俊 《微生物学报》2017,57(9):1400-1408
细菌中整合性遗传元件与DNA修饰和防御、毒力因子传播以及次级代谢等生理功能存在关联,而相关研究在超嗜热古菌中尚处于起步阶段。本文综述了超嗜热古菌中整合性病毒、质粒及基因组岛等整合性遗传元件的分类、整合及维持机制。展示了整合性遗传元件参与的水平基因转移过程在超嗜热古菌基因组演化中扮演的重要角色。整合性遗传元件相关功能基因组学研究为理解超嗜热古菌的多样性及其环境适应性机制提供了新的视角。  相似文献   

9.
极端嗜盐古菌蛋白类抗生素——嗜盐菌素   总被引:5,自引:0,他引:5  
古菌 (Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1] ,大多生活在极端或特殊环境 ,主要包括产甲烷古菌 (MethanogenicAchaea)、极端嗜盐古菌 (ExtremelyHalophilicArchaea)和极端嗜热古菌 (ExtremelyThermophilicArchaea)等三大类。极端古菌是极端环境微生物的重要成员 ,也是极端环境微生物资源开发的重要领域。其中 ,嗜盐古菌可产生一类蛋白类抗生素 ,称为嗜盐菌素 (halocin)。与细菌素相似[2 ] ,嗜盐菌素是由质粒编码、核糖体合…  相似文献   

10.
张帆  张兵  向华  胡松年 《微生物学报》2009,49(11):1445-1453
摘要:【目的】利用生物信息学方法了解目前拥有全基因组序列的极端嗜盐古菌中CRISPR结构的特征。【方法】通过比对,保守性分析,GC含量分析,RNA结构预测等方法对已有全基因组序列的嗜盐古菌基因组进行研究。【结果】在5株嗜盐古菌基因组中发现CRISPR结构,在leader序列内得到具有回文性质的保守motif。发现在大CRISPR结构内repeat序列具有很强的保守性。同时根据第四位碱基的不同,repeat序列可形成两类不同的RNA二级结构。【结论】leader序列中回文结构的发现对其可能为蛋白结合位点的假  相似文献   

11.
Cytosine deamination and the misincorporation of 2'-dUrd into DNA during replication result in the presence of uracil in DNA. Uracil-DNA glycosylases (UDGs) initiate the excision repair of this aberrant base by catalyzing the hydrolysis of the N-glycosidic bond. UDGs are expressed by nearly all known organisms, including some viruses, in which the functional role of the UDG protein remains unresolved. This issue could in principle be addressed by the availability of designed synthetic inhibitors that target the viral UDG without affecting the endogenous human UDG. Here, we report that double-stranded and single-stranded oligonucleotides incorporating either of two dUrd analogs tightly bind and inhibit the activity of herpes simplex virus type-1 (HSV-1) UDG. Both inhibitors are exquisitely specific for the HSV-1 UDG over the human UDG. These inhibitors should prove useful in structural studies aimed at understanding substrate recognition and catalysis by UDGs, as well as in elucidating the biologic role of UDGs in the life cycle of herpesviruses.  相似文献   

12.
Uracil in DNA arises by misincorporation of dUMP during replication and by hydrolytic deamination of cytosine. This common lesion is actively removed through a base excision repair (BER) pathway initiated by a uracil DNA glycosylase (UDG) activity that excises the damage as a free base. UDGs are classified into different families differentially distributed across eubacteria, archaea, yeast, and animals, but remain to be unambiguously identified in plants. We report here the molecular characterization of AtUNG (Arabidopsis thaliana uracil DNA glycosylase), a plant member of the Family-1 of UDGs typified by Escherichia coli Ung. AtUNG exhibits the narrow substrate specificity and single-stranded DNA preference that are characteristic of Ung homologues. Cell extracts from atung−/− mutants are devoid of UDG activity, and lack the capacity to initiate BER on uracil residues. AtUNG-deficient plants do not display any apparent phenotype, but show increased resistance to 5-fluorouracil (5-FU), a cytostatic drug that favors dUMP misincorporation into DNA. The resistance of atung−/− mutants to 5-FU is accompanied by the accumulation of uracil residues in DNA. These results suggest that AtUNG excises uracil in vivo but generates toxic AP sites when processing abundant U:A pairs in dTTP-depleted cells. Altogether, our findings point to AtUNG as the major UDG activity in Arabidopsis.  相似文献   

13.
7,8二氢-8-氧鸟嘌呤(7,8-dihydro-8-oxoguanine,8oxoG)是一种常见的DNA损伤碱基.由于8oxoG能够与腺嘌呤配对,在DNA中的8oxoG被修复之前进行复制,DNA将会产生GC→TA的突变,从而造成基因组的不稳定.目前,碱基切除修复(Base excision repair,BER)是修...  相似文献   

14.
The spontaneous deamination of cytosine produces uracil mispaired with guanine in DNA, which will produce a mutation, unless repaired. In all domains of life, uracil-DNA glycosylases (UDGs) are responsible for the elimination of uracil from DNA. Thus, UDGs contribute to the integrity of the genetic information and their loss results in mutator phenotypes. We are interested in understanding the role of UDG genes in the evolutionary variation of the rate and the spectrum of spontaneous mutations. To this end, we determined the presence or absence of the five main UDG families in more than 1,000 completely sequenced genomes and analyzed their patterns of gene loss and gain in eubacterial lineages. We observe nonindependent patterns of gene loss and gain between UDG families in Eubacteria, suggesting extensive functional overlap in an evolutionary timescale. Given that UDGs prevent transitions at G:C sites, we expected the loss of UDG genes to bias the mutational spectrum toward a lower equilibrium G + C content. To test this hypothesis, we used phylogenetically independent contrasts to compare the G + C content at intergenic and 4-fold redundant sites between lineages where UDG genes have been lost and their sister clades. None of the main UDG families present in Eubacteria was associated with a higher G + C content at intergenic or 4-fold redundant sites. We discuss the reasons of this negative result and report several features of the evolution of the UDG superfamily with implications for their functional study. uracil-DNA glycosylase, mutation rate evolution, mutational bias, GC content, DNA repair, mutator gene.  相似文献   

15.
Cytosine deamination is a major promutagenic process, generating G:U mismatches that can cause transition mutations if not repaired. Uracil is also introduced into DNA via nonmutagenic incorporation of dUTP during replication. In bacteria, uracil is excised by uracil-DNA glycosylases (UDG) related to E. coli UNG, and UNG homologs are found in mammals and viruses. Ung knockout mice display no increase in mutation frequency due to a second UDG activity, SMUG1, which is specialized for antimutational uracil excision in mammalian cells. Remarkably, SMUG1 also excises the oxidation-damage product 5-hydroxymethyluracil (HmU), but like UNG is inactive against thymine (5-methyluracil), a chemical substructure of HmU. We have solved the crystal structure of SMUG1 complexed with DNA and base-excision products. This structure indicates a more invasive interaction with dsDNA than observed with other UDGs and reveals an elegant water displacement/replacement mechanism that allows SMUG1 to exclude thymine from its active site while accepting HmU.  相似文献   

16.
Uracil-DNA glycosylases (UDGs) catalyse the removal of uracil by flipping it out of the double helix into their binding pockets, where the glycosidic bond is hydrolysed by a water molecule activated by a polar amino acid. Interestingly, the four known UDG families differ in their active site make-up. The activating residues in UNG and SMUG enzymes are aspartates, thermostable UDGs resemble UNG-type enzymes, but carry glutamate rather than aspartate residues in their active sites, and the less active MUG/TDG enzymes contain an active site asparagine. We now describe the first member of a fifth UDG family, Pa-UDGb from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum, the active site of which lacks the polar residue that was hitherto thought to be essential for catalysis. Moreover, Pa-UDGb is the first member of the UDG family that efficiently catalyses the removal of an aberrant purine, hypoxanthine, from DNA. We postulate that this enzyme has evolved to counteract the mutagenic threat of cytosine and adenine deamination, which becomes particularly acute in organisms living at elevated temperatures.  相似文献   

17.
Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures ~100°C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases δ and ε for nuclear DNA and polymerase γ for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.  相似文献   

18.
Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 enzyme are not only UDGs but also xanthine DNA glycosylases (XDGs). In addition, mutational analysis and molecular dynamics (MD) simulations of Gme SMUG1 identify important structural determinants in conserved motifs 1 and 2 for XDG and UDG activities. Mutations at M57 (M57L) and H210 (H210G, H210M, and H210N), both of which are involved in interactions with the C2 carbonyl oxygen in uracil or xanthine, cause substantial reductions in XDG and UDG activities. Increased selectivity is achieved in the A214R mutant of Gme SMUG1, which corresponds to a position involved in base flipping. This mutation results in an activity profile resembling a human SMUG1-like enzyme as exemplified by the retention of UDG activity on mismatched base pairs and weak XDG activity. MD simulations indicate that M57L increases the flexibility of the motif 2 loop region and specifically A214, which may account for the reduced catalytic activity. G60Y completely abolishes XDG and UDG activity, which is consistent with a modeled structure in which G60Y blocks the entry of either xanthine or uracil to the base binding pocket. Most interestingly, a proline substitution at the G63 position switches the Gme SMUG1 enzyme to an exclusive UDG as demonstrated by the uniform excision of uracil in both double-stranded and single-stranded DNA and the complete loss of XDG activity. MD simulations indicate that a combination of a reduced free volume and altered flexibility in the active-site loops may underlie the dramatic effects of the G63P mutation on the activity profile of SMUG1. This study offers insights on the important role that modulation of conformational flexibility may play in defining specificity and catalytic efficiency.  相似文献   

19.
Uracil‐DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil‐DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.  相似文献   

20.

Background  

Uracil-DNA glycosylases (UDGs) catalyze excision of uracil from DNA. Vaccinia virus, which is the prototype of poxviruses, encodes a UDG (vvUDG) that is significantly different from the UDGs of other organisms in primary, secondary and tertiary structure and characteristic motifs. It adopted a novel catalysis-independent role in DNA replication that involves interaction with a viral protein, A20, to form the processivity factor. UDG:A20 association is essential for assembling of the processive DNA polymerase complex. The structure of the protein must have provisions for such interactions with A20. This paper provides the first glimpse into the structure of a poxvirus UDG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号