首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 972 毫秒
1.
【目的】分离获得β-葡萄糖苷酶高产菌株,确定该菌分类地位,并对其所产β-葡萄糖苷酶的酶学性质进行初步研究。【方法】采用七叶灵显色法从土壤样品中筛选β-葡萄糖苷酶产生菌,再用对硝基苯基-β-D-吡喃葡萄糖苷(PNPG)显色法进行复筛;通过形态特征、生理生化特征及16S rDNA序列相似性分析等方法确定其分类学地位;利用超滤、疏水层析、阴离子层析、分子筛层析法对β-葡萄糖苷酶进行分离纯化;以PNPG为底物,测定β-葡萄糖苷酶的最适反应pH及最适反应温度,通过双倒数作图法确定β-葡萄糖苷酶催化不同底物水解的米氏常数Km值。【结果】从土壤样品中筛选得到一株β-葡萄糖苷酶高产菌株ZF-6C,初步鉴定为Bacillus korlensis;芽胞杆菌ZF-6C所产β-葡萄糖苷酶的分子量约为90 kD,最适反应pH和温度分别为7.0和40°C,该酶具有水解β(1,4)糖苷键的活性,最适底物为邻硝基苯-β-D-吡喃葡萄糖苷,Km值为0.73 mmol/L。金属离子Ca2+、Pb2+增强酶活,而Cu2+、Fe2+抑制酶活。【结论】首次报道从Bacillus korlensis中分离得到β-葡萄糖苷酶,Bacillus korlensis ZF-6C所产β-葡萄糖苷酶在分子量、最适反应条件及底物特异性等方面均不同于已知酶,可能为一结构新颖且催化效率较高的β-葡萄糖苷酶。  相似文献   

2.
【目的】筛选鉴定1株产β-葡萄糖苷酶的菌株,克隆、表达该菌株中的β-葡萄糖苷酶基因,研究重组酶的酶学性质并进行分子改造。【方法】在自然界中采集土样,筛选到1株具有β-葡萄糖苷酶活性的菌株,对野生菌进行16S rDNA鉴定,比对分析Gen Bank数据库中与野生菌同属的β-葡萄糖苷酶基因序列,设计简并引物PCR扩增基因保守区;设计引物扩增目的基因,以pQE30为表达载体构建重组质粒,转化至大肠杆菌中进行诱导表达;采用镍亲和层析对重组酶进行纯化,研究其酶学性质;采用易错PCR和定点随机突变相结合的方法对野生型β-葡萄糖苷酶进行分子改造。【结果】一个来自于差异柠檬酸杆菌GXW-1的β-葡萄糖苷酶基因被克隆并在大肠杆菌中表达。酶学性质研究结果表明该β-葡萄糖苷酶CBGL的最适温度为45°C,最适p H为6.0,V_(max)值是(0.1704±0.0073)μmol/(mg·min),K_(cat)值为(0.2380±0.0102)/s。CBGL能水解α-pNPG、甜菊苷、黄豆苷和染料木苷。对野生酶进行分子改造,获得V_(max)是野生酶2.54倍的突变体W147F。【结论】CBGL不仅具有β-1,4-糖苷键水解能力,还可能具有一定的α-糖苷键水解酶活性。此外,CBGL还能够水解天然底物甜菊苷、黄豆苷和染料木苷。这些特性表明该β-葡萄糖苷酶在理论研究及在工业中有一定的应用价值。  相似文献   

3.
一株纤维素降解真菌的筛选及鉴定   总被引:3,自引:0,他引:3  
[目的]分离筛选高效降解纤维素的真菌菌株,并研究其产酶能力.[方法]利用刚果红染色法从甘蔗地土壤中分离纤维素降解真菌,再通过测定滤纸的降解率及发酵酶活复筛.[结果]综合考虑水解圈,水解圈和菌株直径的比值(HC值),滤纸的降解率和复筛酶活,对试验真菌降解纤维素的能力进行综合评价,筛选到具有较强纤维素降解能力的真菌菌株SJ1,经形态学观察及分子生物学鉴定,该菌属于草酸青霉.其滤纸酶活、内切葡聚糖酶酶活(CMC酶活)、β-葡聚糖苷酶酶活和外切葡聚糖酶酶活(CBH酶活)分别为25.15、740.42、58.03和2.442 U/mL.[结论]菌株SJ1是一株十分具有研究开发潜力的纤维素酶生产菌株.  相似文献   

4.
利用经过改良的初筛培养基,以p-NPG为底物作为筛子,从葡萄园土壤及葡萄表皮中筛选到一株产β-葡萄糖苷酶酶活较高的茵株,经18S rDNA鉴定为黑曲霉.通过离子束注入技术对该茵株进行诱变,获得了一株高产β-葡萄糖苷酶诱变菌株H68,与原茵株相比,酶活提高了53%.  相似文献   

5.
白藜芦醇具有抗癌、抗氧化等八大功效,在医药、化妆品等领域应用广泛。为获得分泌β-葡萄糖苷酶的细菌菌株,并实现其对虎杖苷的有效转化。通过栀子苷平板初筛、虎杖苷摇瓶复筛,筛选得到一株能够分泌β-葡萄糖苷酶,转化虎杖苷生成白藜芦醇的菌株,并利用16S r DNA序列对筛选得到的菌株进行鉴定,鉴定为沙福芽孢杆菌(Bacillus safensis),命名为CGMCC13129,该菌株在37℃,接种量为7%,底物虎杖苷浓度为0.1%,p H为7,转化8 h的条件下,对底物虎杖苷的转化率可达90%以上,利用HPLC、HPLC-MS、1H-NMR等手段检测转化产物为白藜芦醇,经甲醇萃取一次,纯度高达99.3%。  相似文献   

6.
【背景】低温β-半乳糖苷酶能在低温下仍保持较高的乳糖水解活性,筛选酶学特性适合在牛乳体系中高效水解乳糖的β-半乳糖苷酶生产菌株,是低乳糖牛乳加工产业关注的焦点。【目的】对天山中国一号冰川沉积物中分离的一株产低温β-半乳糖苷酶菌株的产酶条件和酶学特性进行研究。【方法】结合X-Gal平板法初筛和测定粗酶液酶活复筛,获得产低温β-半乳糖苷酶的菌株。通过形态学、生理生化试验及16S rRNA基因测序分析对筛选菌株进行鉴定,单因素摇瓶实验优化菌株的产酶条件,硫酸铵分级沉淀初步纯化β-半乳糖苷酶并对其酶学特性进行分析。【结果】通过形态学、生理生化特征和16S rRNA基因鉴定,确定菌株LW106为微杆菌属(Microbacterium)菌株;该菌株最适产酶温度为25°C,最佳产酶碳源为可溶性淀粉,培养基初始pH为7.0,接种量为3%;对初步纯化的低温β-半乳糖苷酶酶学性质的研究表明,LW106所产β-半乳糖苷酶的最适pH为6.0,最适反应温度为35°C,4°C时酶活为最大酶活的78%,4°C和pH 7.0时的稳定性最好,10 mmol/L的Na+对酶活性基本没有抑制作用,Ca~(2+)对酶活性具有一定的激活作用。【结论】菌株LW106所产低温β-半乳糖苷酶的酶学特性表明该酶在乳品低温加工领域具有进一步研究和应用的价值。  相似文献   

7.
酶法制备荷叶黄酮苷元的研究   总被引:1,自引:0,他引:1  
利用微生物产生的β-葡萄糖苷酶水解荷叶黄酮苷成苷元型黄酮,可以提高黄酮的生物活性.本文通过单因素和正交试验考察了pH值、温度和酶/底物比对酶解效率的影响,并运用HPLC-MS对酶解前后的产物进行了分析.结果表明:pH值为4.5,温度为45℃,酶/底物为3:1时酶解效率最高.在此条件下,25 mL荷叶黄酮苷在6.5 h可以酶解完全.LC-MS分析表明酶解产物中槲皮素含量达到75.34%,其它苷元型黄酮含量比较低.  相似文献   

8.
【背景】从健康甘草须根中分离获得的一株芽孢杆菌具有高产β-葡萄糖苷酶的活性。【目的】探究分离菌株潜在的产酶遗传信息,为该菌深入研究与工业应用提供数据支撑。【方法】利用七叶苷培养基进行产β-葡萄糖苷酶的益生菌筛选,筛到一株产β-葡萄糖苷酶的芽孢杆菌,采用三代Nanopore PromethION和二代Illumina NovaSeq平台对菌株进行基因组测序与组装、并通过基因预测与功能注释等生物信息分析预测菌株潜在的β-葡萄糖苷酶基因。另外,以β-葡萄糖苷酶活性为指标,研究碳源、氮源、接种量、温度和起始pH对菌株产酶活性的影响。【结果】从甘草须根中分离得到一株具有β-葡萄糖苷酶活性的菌株,通过形态学观察、生理生化和分子生物学试验鉴定为芽孢杆菌属菌株,并命名为Bacillus rugosus A78.1。该菌株基因组大小为4 146 938 bp,G+C含量为43.86%,共编码4 255个基因。在基因组中,共注释到碳水化合物活性酶基因192个,其中β-葡萄糖苷酶基因10个,分别属于GH1和GH3家族基因。在基因本体(GO)、京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)和同源基因簇(clusters of orthologous groups of proteins,COG)数据库分别注释到2 896、4 019和3 657个基因。该菌株基因组测序结果上传至NCBI获得GenBank登录号为CP096590。菌株A78.1产β-葡萄糖苷酶的最佳碳、氮源分别为0.5%葡萄糖、1.0%酵母浸粉,最佳培养条件为温度37℃、3%接种量、pH 6.0,此条件下β-葡萄糖苷酶活力可达到(5.640±0.085) U/mL。【结论】通过全基因组测序分析及产酶优化试验确定了Bacillus rugosus A78.1优良的产β-葡萄糖苷酶能力及在碳水化合物代谢方面的潜力,为该菌株在纤维素分解、糖苷类化合物水解等生物、化工和食品领域的研究与应用提供基础。  相似文献   

9.
【目的】从发酵食品材料中筛选出对玉米赤霉烯酮(ZEN)有分解作用的微生物,研究其分解效率及产酶特征并进行菌种鉴定。【方法】利用添加ZEN毒素类似物(PL)的固体培养基对25种发酵食品材料进行初筛,获得毒素类似物耐受菌株,经过用ZEN复筛,得到高效分解ZEN的细菌。用高效液相色谱法(HPLC)分析培养物残留ZEN,评价菌株对ZEN的分解效率。初步分析该菌株产纤维素酶、木聚糖酶及β-葡萄糖苷酶的特性。通过微生物形态学、分子生物学方法进行菌种鉴定,确定该菌的系统分类学地位。【结果】从发酵食品材料中筛选出一株分解ZEN的菌株BF-B-3,经初步鉴定该菌株为枯草芽孢杆菌(Bacillus subtilis)。其ZEN分解率达62.48%,测定该菌产纤维素酶、木聚糖酶及β-葡萄糖苷酶活力分别为160.38、84.51和4.14 U/mL。【结论】枯草芽孢杆菌属于饲用微生物,生物安全性高,所分离到的枯草芽孢杆菌疑似株(Bacillus subtilis)BF-B-3菌株,可作为具有分解ZEN功能的益生菌使用,具有较好的应用前景。  相似文献   

10.
β-葡萄糖苷酶来源广泛,几乎存在于所有的生物体中,而不同来源的β-葡萄糖苷酶其性质也各不同.本文利用七叶苷分离培养基从土样中分离筛选出产6种β-葡萄糖苷酶时间较快的菌种,其中发现菌种WGEA1酶活性较高,随后对菌种WGEA1进行初步的鉴定并且采用DNS法测该菌株所产粗酶液的酶学特性.酶学特性表明,WGEA1产的β-葡萄糖苷酶最适温度是在50~55℃之间,最适pH在6~7之间;在低于50℃条件下,pH为5~8时,酶活较稳定,同时在最适反应时间30 min下,金属离子和有机溶剂都对酶活性影响很大,这些发现都为在非水相体系中酶法合成烷基糖苷奠定了一定的基础.  相似文献   

11.
从木霉属、曲霉属、担子菌等17种试验菌株中筛选出一株产β-葡萄糖苷酶活性较高的黑曲霉A.niger-nl-1。该菌株在适宜的培养条件下,β-葡萄糖苷酶的最高活力达到4.7U/mL,适宜的产酶周期为4d。制备的β-葡萄糖苷酶最适反应温度为55℃、最适反应pH为5.0。该菌株除能产生β-葡萄糖苷酶外,还能产生内切葡聚糖酶和外切葡聚糖酶,滤纸酶活达到0.62IU/mL。  相似文献   

12.
[目的]通过对天山1号冰川底部沉积层冻土中细菌的分离和产β-半乳糖苷酶低温菌株的筛选,了解天山冻土微生物的物种多样性,并对产β-半乳糖苷酶低温菌株的系统发育和生理多样性进行分析.[方法]以乳糖为主要碳源,X-Gal为显色剂,分离筛选出产低温β-半乳糖苷酶菌株.对细菌常规生理生化实验、最适生长温度、耐盐性、药物敏感性进行测定.根据16S rRNA基因序列初步确定产β-半乳糖苷酶低温菌种的系统进化地位,并采用BOX-PCR指纹图谱技术对16S rRNA基因高度同源性的菌株进一步区分.[结果]分离到90株可培养低温菌中25株可产β-半乳糖苷酶,其中76%为革兰氏阳性菌.依据生长温度,产酶菌株80%为嗜冷菌,20%为耐冷菌.在系统发育上,产酶菌株隶属于4个类群,其中肠球菌属(Enterococcus)占26%,短波单胞菌属(Brevundimonas)占22%,假单胞菌属(Pseudomonas)占13%.[结论]天山1号冰川底部沉积层冻土中产β-半乳糖苷酶的低温细菌具有比较丰富的物种和生理多样性.  相似文献   

13.
[目的]构建长野芽孢杆菌普鲁兰酶突变体枯草芽孢杆菌工程菌株,优化发酵条件,筛选廉价的培养基原料生产普鲁兰酶。[方法]利用分子生物学手段,将基因pul324和表达载体p WB980连接,构建表达质粒p WB-pul324并转化Bacillus subtilis WB600;对表达产物进行SDS-PAGE分析和初始酶活的测定。进一步优化发酵条件,对不同碳源和氮源进行发酵培养基的筛选,同时研究不同金属离子的添加和培养基初始p H、接种量对发酵产酶的影响。[结果]获得基因工程菌B.subtilis WB600/p WB-pul324,SDS-PAGE电泳结果显示在89 k Da处有特异性条带,发酵初始酶活为12.34 U/ml;筛选得到玉米淀粉水解液和玉米浆干粉为培养基最适碳源和氮源,其最适浓度分别为50 g/L和30 g/L。Mn~(2+)、Fe~(3+)、Fe~(2+)和Tween-80的添加能提高发酵产酶活力。在最适初始p H 6.5,以最适5%接种量接种于优化后的培养基中,摇瓶发酵80 h普鲁兰酶的酶活达到414.48 U/ml。[结论]实现了普鲁兰酶突变体在枯草芽孢杆菌中的高效表达,筛选获得的培养基主要原料经济低廉,经过发酵条件优化后,重组菌酶活达到414.48 U/ml,是之前研究结果(20.16U/ml)的20倍。  相似文献   

14.
本文对33株枯草芽孢杆菌群菌株进行β-甘露聚糖酶活性筛选,其中的32株具有β-甘露聚糖酶活性,只有1株无β-甘露聚糖酶活性.通过基因克隆测序的方法获得33株枯草芽孢杆菌群菌株β-甘露聚糖酶基因编码区全序列,对酶基因进行同源性分析并构建系统发育树;在β-甘露聚糖酶基因系统发育树中,33株枯草芽孢杆菌群菌株聚为3个分支,分别是枯草芽孢杆菌分支、地衣芽孢杆菌分支和解淀粉芽孢杆菌分支;枯草芽孢杆菌、地衣芽孢杆菌和解淀粉芽孢杆菌β-甘露聚糖酶基因种内同源性大于91%,而种间同源性为60%69%.  相似文献   

15.
枯草杆菌弹性蛋白酶高产菌株的筛选与鉴定   总被引:5,自引:0,他引:5  
从稻草中初筛出14株具有溶解弹性蛋白作用的G+产芽孢杆菌,经分离纯化筛选诱变,并进行生理生化鉴定后,得到2株产酶活较高的枯草芽孢杆菌B.subtilis HW236-5和HW245-1,作为是制备抗动脉粥样硬化枯草杆菌弹性酶的产酶菌株。  相似文献   

16.
[目的]以纤维素为唯一碳源,从四川省阿坝自治州黄龙沟的高山低温环境中分离筛选产纤维素酶的耐冷菌,并研究菌株的产酶特征.[方法]根据菌株的ITS序列分析及形态特征,对菌株进行鉴定.利用DNS法测定纤维素酶酶活性.[结果]从四川省阿坝自治州黄龙沟的高山腐殖土中筛选出一株产纤维素酶的耐冷菌HD1031,经鉴定该菌为玫红假裸囊菌(Pseudogymnoascus roseus).该菌可在4℃-25℃生长,最适生长温度为16℃-17℃.该菌在以微晶纤维素和玉米芯粉为碳源、硫酸铵和Tryptone为氮源的培养基中,17℃、160 r/min摇瓶发酵8d后产生纤维素酶,其中内切葡聚糖酶酶活为366.67 U/mL,滤纸酶酶活87.6 U/mL,β-葡萄糖苷酶酶活90.8 U/mL,酶最适反应pH为6.0,最适反应温度为50℃.[结论]筛选获得一株产纤维素酶的耐冷菌HD1031,此菌株所产纤维素酶在20℃-40℃下活性较高,对热敏感,具有低温纤维素酶的特点.  相似文献   

17.
采用人工底物邻硝基苯酚-β-D-半乳糖苷(o NPG)为筛选标记,从耐有机溶剂微生物菌库中,筛选出具有较高水解活性的β-半乳糖苷酶产生菌,再以乳糖为底物考察菌株低聚半乳糖的合成性能,筛选得到1株产β-半乳糖苷酶的Erwinia billingiae WX1。根据Gen Bank中相同属种的基因组序列推测β-半乳糖苷酶基因,克隆得到β-半乳糖苷酶基因gal,并在大肠杆菌中实现了来源于Erwinia billingiae菌β-半乳糖苷酶的克隆表达。该基因的开放阅读框(ORF)为1 428 bp,编码475个氨基酸,理论相对分子质量为5.2×104。镍柱法分离纯化得到电泳纯的β-半乳糖苷酶GAL,其酶学性质研究表明最适催化温度55℃,最适p H 7.0;Mg~(2+)、Mn~(2+)对该酶起较强促进作用,EDTA对该酶抑制作用较强。利用β-半乳糖苷酶GAL的转糖基作用,以乳糖为底物合成低聚半乳糖,初步优化的反应条件:底物乳糖质量浓度400 g/L,每克乳糖添加酶量1.0 U,在40℃反应16 h后,低聚半乳糖合成率达到34%(质量分数),显示了较好的开发前景。  相似文献   

18.
目的从云南豆豉样品中筛选产β-半乳糖苷酶的乳酸菌,并对其产酶条件进行研究。方法从云南省元阳、红河、建水、石屏等地采集豆豉样品,并从中分离得到355株微生物。结果经明胶诱导、脱脂乳平板实验,复筛得到87株蛋白酶产生菌,从中筛选产β-半乳糖苷酶的乳酸菌。通过X-Gal平板实验,共获得34株产β-半乳糖苷酶菌株,通过酶活测定,最终筛选得到1株高产β-半乳糖苷酶菌株GJ-1-3L,经16S rDNA序列分析鉴定为短乳杆菌;GJ-1-3L在以葡萄糖为碳源、多聚蛋白胨为氮源、起始pH 6.5的MRS培养基中,接种量为4%,35℃发酵培养12 h,其β-半乳糖苷酶活性高达6.73 U/mL,Cu2+、Ba2+对酶活有抑制作用,而K2HPO4、MgSO4则能促进酶活。结论 GJ-1-3L菌株来源于豆豉,能够产生β-半乳糖苷酶发酵乳糖,同时产生乳酸,其在食品与乳品加工等方面具有很好的应用前景。  相似文献   

19.
[目的]获得高产纤维素酶细菌菌株,探讨以氨化预处理玉米秸秆为底物时的纤维素酶产酶特性及底物降解特性,探讨纤维素酶作用机理,提高玉米秸秆利用率.[方法]用LB培养基分离并纯化菌株,羧甲基纤维素钠培养基培养、刚果红染色进行初步筛选.考察氨化预处理对底物降解率、产酶能力的影响.通过形态特征观察及16S rRNA、Biolog鉴定菌株.[结果]分离到一株高效纤维素降解菌NH11,经鉴定为枯草芽孢杆菌(Bacillus subtilis). 30℃、发酵5d时,预处理前后玉米秸秆降解率分别为14.24%和24.73%.30℃、pH 7.2时,处理组CMC酶活力峰值处为153.84 U/mL,FPA酶活力为197.24 U/mL,比未处理组分别高出11.45%和10.59%.[结论]NH11具有较高的纤维素酶产酶能力,氨化预处理能够提高菌株对玉米秸秆的降解率.该菌株在秸秆堆肥、制作食用菌培养基和制取反刍动物粗饲料方面具有很高的应用价值.  相似文献   

20.
【背景】β-淀粉酶在食品和医疗领域应用广泛。目前工业上使用的β-淀粉酶主要从植物中提取,生产成本高,限制了β-淀粉酶的应用。微生物生产的β-淀粉酶尽管早有报道,但由于产酶水平低下,因而一直未能实现工业化。【目的】实现巨大芽孢杆菌β-淀粉酶在枯草芽孢杆菌中的高效诱导表达,缓解碳分解代谢物阻遏(Carbon catabolite repression,CCR)对该重组酶表达的影响,并研究其酶学性质。【方法】克隆枯草芽孢杆菌木糖诱导启动子,构建木糖诱导表达载体以介导巨大芽孢杆菌1514的β-淀粉酶编码基因amyM在枯草芽孢杆菌中的异源表达。定点突变位于amyM信号肽编码区的分解代谢物响应元件(Catabolite responsive element,CRE),降低碳源代谢对重组β-淀粉酶施加的阻遏。【结果】构建了诱导表达β-淀粉酶基因的重组枯草芽孢杆菌菌株。同义替换amyM-CRE保守碱基在不同程度上缓解了碳源所施加的CCR效应,重组酶的表达水平得到显著提高。重组酶的分子量为57 kD,水解可溶性淀粉主要生成麦芽糖和少量葡萄糖,其中麦芽糖含量为72%。该酶最适作用温度为50°C,最适反应pH为6.0。Co2+、Ca2+对重组β-淀粉酶具有激活作用。【结论】通过木糖诱导表达系统和碳代谢去阻遏实现了β-淀粉酶在枯草芽孢杆菌中的高效表达,酶活最高可达97.16 U/mL发酵液,比amyM基因来源菌巨大芽孢杆菌1514的β-淀粉酶产量提高了440倍,为β-淀粉酶发酵生产的工业化提供了支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号