共查询到20条相似文献,搜索用时 0 毫秒
1.
L H Carney 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1992,336(1278):403-406
This study investigates a potential mechanism for the processing of acoustic information that is encoded in the spatiotemporal discharge patterns of auditory nerve (AN) fibres. Recent physiological evidence has demonstrated that some low-frequency cells in the anteroventral cochlear nucleus (AVCN) are sensitive to manipulations of the phase spectrum of complex sounds (Carney 1990b). These manipulations result in systematic changes in the spatiotemporal discharge patterns across groups of low-frequency AN fibres having different characteristic frequencies (CFS). One interpretation of these results is that these neurons in the AVCN receive convergent inputs from AN fibres with different CFS, and that the cells perform a coincidence detection or cross-correlation upon their inputs. This report presents a model that was developed to test this interpretation. 相似文献
2.
3.
Type II units in the dorsal cochlear nucleus (DCN) are characterized by vigorous but nonmonotonic responses to best frequency
tones as a function of sound pressure level, and relatively weak responses to noise. A model of DCN neural circuitry was used
to explore two hypothetical mechanisms by which neurons may be endowed with type II unit response properties. Both mechanisms
assume that type II units receive excitatory input from auditory nerve (AN) fibers and inhibitory input from an unspecified
class of cochlear nucleus interneurons that also receive excitatory AN input. The first mechanism, a lateral inhibition (LI)
model, supposes that type II units receive inhibitory input from a number of narrowly tuned interneurons whose best frequencies
(BFs) flank the BF of the type II unit. Tonal stimuli near BF result in only weak inhibitory input, but broadband stimuli
recruit enough lateral inhibitors to greatly weaken the type II unit response. The second mechanism, a wideband inhibition
(WBI) model, supposes that type II units receive inhibitory input from interneurons that are broadly tuned so that they respond
more vigorously to broadband stimuli than to tones. Physiological and anatomical evidence points to the possible existence
of such a class of neurons in the cochlear nucleus. The model extends an earlier computer model of an iso-frequency DCN patch
to multiple frequency slices and adds a population of interneurons to provide the inhibition to model type II units (called
I2-cells). The results show that both mechanisms accurately simulate responses of type II units to tones and noise. An experimental
paradigm for distinguishing the two mechanisms is proposed.
Received: 30 December 1996/Accepted in revised form: 13 March 1997 相似文献
4.
Mark E. Warchol Peter Dallos 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,166(1):83-95
Recordings were made in the chick cochlear nucleus from neurons that are sensitive to very low frequency sound. The tuning, discharge rate response and phase-locking properties of these units are described in detail. The principal conclusions are: 1. Low frequency (LF) units respond to sound frequencies between 10-800 Hz. Best thresholds average 60 dB SPL, and are occasionally as low as 40 dB SPL. While behavioral thresholds in this frequency range are not available for the domestic chick, these values are in good agreement with the pigeon behavioral audiogram (Kreithen and Quine 1979). 2. About 60% of the unit population displays tuning curves resembling low-pass filter functions with corner frequencies between 50-250 Hz. The remaining units have broad band-pass tuning curves. Best frequencies range from 50-300 Hz. 3. Spontaneous discharge rate was analyzed quantitatively for LF units recorded from nucleus angularis. The distribution of spontaneous rates for LF units is similar to that seen from higher CF units (300-5000 Hz) found in the same nucleus. However, the spontaneous firing of LF units is considerably more regular than that of their higher CF counterparts. 4. Low frequency units with low spontaneous rates (SR's less than 40 spikes/s) show large driven rate increases and usually saturate by discharging once or twice per stimulus cycle. Higher SR units often show no driven rate increases. 5. All LF units show strong phase-locking at all excitatory stimulus frequencies. Vector strengths as high as 0.98 have been observed at moderate sound levels. 6. The preferred phase of discharge (relative to the sound stimulus) increases with stimulus frequency in a nearly linear manner. This is consistent with the LF units being stimulated by a traveling wave. The slope of these phase-frequency relationships provides an estimate of traveling wave delay. These delays average 7.2 ms, longer than those seen for higher CF auditory brainstem units. These observations suggest that the peripheral site of low frequency sensitivity is the very distal region of the basilar papilla, an area whose morphology differs significantly from the rest of the chick basilar papilla. 7. LF units are described whose response to sound is inhibitory at frequencies above 50 Hz. 相似文献
5.
The neurons in the mammalian (gerbil, cat) dorsal cochlear nucleus (DCN) have responses to tones and noise that have been used to classify them into unit types. These types (I–V) are based on excitatory and inhibitory responses to tones organized into plots called response maps (RMs). Type I units show purely excitatory responses, while type V units are primarily inhibited. A computational model of the neural circuitry of the mammalian DCN, based on the MacGregor neuromime, was used to investigate RMs of the principal cells (P-cells) that represent the fusiform and giant cells. In gerbils, fusiform cells have been shown to have primarily type III unit response properties; however, fusiform cells in the cat DCN are thought to have type IV unit response properties. The DCN model is based on a previous computational model of the cat (Hancock and Voigt Ann Biomed Eng 27: 73–87, 1999) and gerbil (Zheng and Voigt Ann Biomed Eng 34: 697–708, 2006) DCN. The basic model for both species is architecturally the same, and to get either type III unit RMs or type IV unit RMs, connection parameters were adjusted. Interestingly, regardless of the RM type, these units in gerbils and cats show spectral notch sensitivity and are thought to play a role in sound localization in the median plane. In this study, further parameter adjustments were made to systematically explore their effect on P-cell RMs. Significantly, type I, type III, type III-i, type IV, type IV-T and type V unit RMs can be created for the modeled P-cells. Thus major RMs observed in the cat and gerbil DCN are recreated by the model. These results suggest that RMs of individual DCN projection neurons are the result of specific assortment of excitatory and inhibitory inputs to that neuron and that subtle differences in the complement of inputs can result in different RM types. Modulation of the efficacy of certain synapses suggests that RM type may change dynamically. 相似文献
6.
R. Martin Arthur 《Biological cybernetics》1976,22(1):21-31
Discharges in cochlear nerve fibers evoked by low frequency phase-locked sinusoidal acoustic stimuli are synchronized to the stimulus waveform. Excitation and suppression regions of single units were explored using a stimulus composed of either a fixed intensity test tone at the characteristic frequency, a variable intensity interfering tone with a simple integer frequency relation to the characteristic frequency, or both. Compound period histograms were constructed from period histograms in response to normal and reversed polarity stimuli. Discharge patterns were characterized by Fourier components of the histogram envelopes. The two stimulus frequencies constituted the principal harmonics in the histogram envelopes and their combination accounted for observed rate changes. Suppression of the test tone harmonic as a function of interfering tone intensity was always seen; rate suppression was not. The harmonic was typically suppressed by 20–30 dB compared to the value for the test tone alone and often reached the 40–60 dB resolution limit of the experiment. Suppression plots were nearly linear on a power scale with an average slope of-0.8. The onset of suppression occurred for an interfering tone 9 dB greater on average than the test tone intensity. Information transfer through the peripheral system was described by the ratio of the principal harmonic amplitudes versus the ratio of the intensities of the two stimulus tones. These plots were nearly linear on a power scale with an average slope of 0.9. Neither the onset of suppression nor the slopes of the harmonic plots displayed strong dependence on characteristic frequency or interfering tone frequency. These features of harmonic behavior, however, are closely related to system nonlinearity. Comparison of measured harmonics to the predictions of two phenomenological models suggest the presence of complex nonlinear transformations in the peripheral auditory system. 相似文献
7.
Neurons in the nucleus magnocellularis (nMAG) of the chicken precisely transmit auditory nerve activity via glutamatergic synapses. Using techniques for rapid application of solutions, we have explored the properties of CNQX-sensitive glutamate receptors in whole cells and outside-out patches from the nMAG. Glutamate-evoked current in patches desensitized biphasically to less than 1% of the peak current, with a fast time constant of 960 microseconds at 22 degrees C, decreasing to 570 microseconds at 33 degrees C. Dose-response studies using kainate indicated that at least two agonist molecules bind to gate the channel. We propose a kinetic model that quantitatively describes our experimental observations. The rapid kinetics of this receptor are well suited to allow phase locking of synaptic signals to auditory stimuli. 相似文献
8.
9.
Manfred Kössl Marianne Vater 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,166(5):711-720
Summary The cochlea of the mustache bat, Pteronotus parnellii, is very sensitive and sharply tuned to the frequency range of the dominant second harmonic of the echolocation call around 61 kHz. About 900 Hz above this frequency the cochlear microphonic potential (CM) reaches its maximum amplitude and lowest threshold. At exactly the same frequency, pronounced evoked otoacoustic emissions (OAE) can be measured in the outer ear canal, indicating mechanical resonance. The CM amplitude maximum and the OAE are most severely masked by simultaneous exposure to tones within the range from about 61–62 kHz up to about 70 kHz. The data suggest that the mechanism of mechanical resonance involves cochlear loci basal to the 61 kHz position.The resonance contributes to auditory sensitivity and sharp tuning: At the frequency of the OAE, single unit responses in the cochlear nucleus have the lowest thresholds. Maximum tuning sharpness occurs at frequencies about 300 Hz below the OAE-frequency, where the threshold is about 10 dB less sensitive than at the OAE-frequency. In addition, in the frequency range around the OAE-frequency several specialized neuronal response features can be related to mechanical resonance: Long lasting excitation after the end of the stimulus, asymmetrical tuning curves with a shallow high frequency slope and phasic on-off neuronal response patterns. In particular the latter phenomenon indicates the occurrence of local mechanical cancellations in the cochlea.Abbreviations
CF
constant frequency component of echolocation calls
-
CM
cochlear microphonic potential
-
FM
frequency modulated component of echolocation calls
-
N1
compound action potential of the auditory nerve
-
OAE
octoacoustic emission
-
SEOAE
synchronous evoked OAE 相似文献
10.
Schwartz JA Reilly NS Knuepfer MM 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,295(1):R155-R165
The brain renin-angiotensin system plays an important role in the regulation of arterial pressure in response to stress, in part due to activation of AT1 receptors in the hypothalamic median preoptic nucleus (MnPO) by endogenous angiotensin II (ANG II). N-methyl-d-aspartate (NMDA) receptors are also involved in the angiotensinergic signaling pathway through the MnPO. We investigated whether AT1 and NMDA receptors in the MnPO are responsible for variable hemodynamic response patterns to stress. Cocaine or startle with cold water evoked a pressor response in Sprague-Dawley rats due, in some rats [vascular responders (VR)], to a large increase in systemic vascular resistance (SVR) and, in other rats [mixed responders (MR)], to small increases in SVR and cardiac output (CO). Microinjection of the GABAA agonist muscimol into the MnPO to block synaptic transmission attenuated the cocaine- or stress-induced increase in SVR and the decrease in CO seen in VR without altering either response in MR. Likewise, administration of either an AT1 receptor antagonist, losartan, or an NMDA receptor antagonist, MK-801, attenuated the increase in SVR and the decrease in CO in VR in response to either cocaine (losartan and MK-801) or startle with cold water (losartan) without altering either response in MR. We propose that the MnPO is responsible for greater SVR responses in VR and that AT1 and NMDA receptors play an important role in greater SVR responses in VR. These data provide additional support for the critical role of the MnPO in cardiovascular responses to stress. 相似文献
11.
M. Kawato 《Journal of mathematical biology》1982,12(1):13-30
The experiment of phase shifts resulting from discrete perturbations of stable biological rhythms has been carried out to study entrainment behavior of oscillators. There are two kinds of phase response curves, which are measured in experiments, according to as one measures the phase shifts immediately or long after the perturbation. The former is the first transient phase response curve and the latter is the steady state phase response curve. We redefine both curves within the framework of dynamical system theory and homotopy theory. Several topological properties of both curves are clarified. Consequently, it is shown that we must compare the shapes of both two phase response curves to investigate the inner structures of biological oscillators. Moreover, we prove that a single limit cycle oscillator involving only two variables cannot simulate transient resetting behavior reported by Pittendrigh and Minis (1964). In other words, the circadian oscillator of Drosophila pseudoobscura does not consist of a single oscillator of two variables. Finally we show that a model which consists of two limit cycle oscillators is able to simulate qualitatively the phase response curves of Drosophila. 相似文献
12.
R Carrat J L Thillier 《Comptes rendus des séances de la Société de biologie et de ses filiales》1976,170(4):900-903
Using enlarged mechanical models of the cochlea and true stimuli sinusoidal or transient, the authors give photographics documents which point out in objective way the "basilar" membrane responses. With pure tones, the membrane vibrates along its entire length no matter what the frequency. With transients, there is a maximum displacement in varying sites but always near the base. 相似文献
13.
Neural coding in the chick cochlear nucleus 总被引:5,自引:0,他引:5
Mark E. Warchol Peter Dallos 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,166(5):721-734
Physiological recordings were made from single units in the two divisions of the chick cochlear nucleus-nucleus angularis (NA) and nucleus magnocellularis (NM). Sound evoked responses were obtained in an effort to quantify functional differences between the two nuclei. In particular, it was of interest to determine if nucleus angularis and magnocellularis code for separate features of sound stimuli, such as temporal and intensity information. The principal findings are: 1. Spontaneous activity patterns in the two nuclei are very different. Neurons in nucleus angularis tend to have low spontaneous discharge rates while magnocellular units have high levels of spontaneous firing. 2. Frequency tuning curves recorded in both nuclei are similar in form, although the best thresholds of NA units are about 10 dB more sensitive than their NM counterparts across the entire frequency range. A wide spread of neural thresholds is evident in both NA and NM. 3. Large driven increases in discharge rate are seen in both NA and NM. Rate intensity functions from NM units are all monotonic, while a substantial percentage (22%) of NA units respond to increased sound level in a nonmonotonic fashion. 4. Most NA units with characteristic frequencies (CF) above 1000 Hz respond to sound stimuli at CF as 'choppers', while units with CF's below 1000 Hz are 'primary-like'. Several 'onset' units are also seen in NA. In contrast, all NM units show 'primary-like' response. 5. Units in both nuclei with CF's below 1000 Hz show strong neural phase-locking to stimuli at their CF. Above 1000 Hz, few NA units are phase-locked, while phase-locking in NM extends to 2000 Hz. 6. These results are discussed with reference to the hypothesis that NM initiates a neural pathway which codes temporal information while NA is involved primarily with intensity coding, similar in principle to the segregation of function seen in the cochlear nucleus of the barn owl (Sullivan and Konishi 1984). 相似文献
14.
Pitfalls in the study of steady state kinetics of enzymes: spurious inhibition patterns due to stray light errors 总被引:1,自引:0,他引:1
When reaction velocity measurements of enzyme reactions are carried out with single beam, single monochromator spectrophotometers, stray light in the spectrophotometer can produce systematic errors in the apparent velocities when highly absorbing solutions (optical density >2.0) are used. These errors can give rise to spurious “inhibition” patterns of the steady state kinetics. Because of a suspected error of this kind, this laboratory has recently reinvestigated the kinetics of glucose 6-phosphate dehydrogenase from Escherichia coli and found that the reported noncompetitive inhibition of the enzyme by DPNH is explained more readily by an unnoticed effect of stray light on the apparent reaction velocity than by a true enzyme inhibition. Methods for estimating and correcting such errors in spectrophotometers are presented in detail. 相似文献
15.
J W Perram 《Journal of theoretical biology》1973,38(3):571-578
The differential equations governing the evolution of a population of bacteria, both in static and continuous culture, are studied. Asymptotic solutions, valid in the limit of large time t, are derived, and hence the characteristic times with which such systems approach their steady-state configurations are obtained. It is suggested from these results that the anomalous experimental results obtained by Herbert, Elsworth &; Telling (1956) near the critical dilution rate D, can be explained in terms of the enormous times which the system will take to reach steady-state in these circumstances. 相似文献
16.
17.
Hubbard EM 《Current biology : CB》2008,18(15):R657-R659
A newly reported form of synaesthesia in which seeing visual motion induces auditory experiences challenges traditional ideas about the neural mechanisms of synaesthesia and may shed light on how the brain integrates information from sound and vision. 相似文献
18.
Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. 总被引:6,自引:0,他引:6
E D Young G A Spirou J J Rice H F Voigt 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1992,336(1278):407-413
The dorsal division of the cochlear nucleus (DCN) is the most complex of its subdivisions in terms of both anatomical organization and physiological response types. Hypotheses about the functional role of the DCN in hearing are as yet primitive, in part because the organizational complexity of the DCN has made development of a comprehensive and predictive model of its input-output processing difficult. The responses of DCN cells to complex stimuli, especially filtered noise, are interesting because they demonstrate properties that cannot be predicted, without further assumptions, from responses to narrow band stimuli, such as tones. In this paper, we discuss the functional organization of the DCN, i.e. the morphological organization of synaptic connections within the nucleus and the nature of synaptic interactions between its cells. We then discuss the responses of DCN principal cells to filtered noise stimuli that model the spectral sound localization cues produced by the pinna. These data imply that the DCN plays a role in interpreting sound localization cues; supporting evidence for such a role is discussed. 相似文献
19.
Action potentials of neurons in cat dorsal and posteroventral cochlear nuclei were recorded extracellularly with glass microelectrodes while the head of the cat was exposed to microwave pulses at 915 MHz using a diathermy applicator. Response thresholds to acoustic tones, acoustic clicks, and microwave pulses were determined for auditory units with characteristic frequencies (CFs) from 278 Hz to 39.2 kHz. Tests with pulsatile stimuli were performed for durations of 20-700 mus, principally 20, 70, and 200 mus. Brainstem midline specific absorption rate (SAR) threshold was as small as 11.1 mW/g per pulse, and specific absorption (SA) threshold was a small as 0.6 muJ/g per pulse. Microwave thresholds were generally lower for CF less than 9 kHz, as were most acoustic thresholds. However, microwave threshold was only weakly related to click threshold and CF-tone threshold of each unit. 相似文献
20.
Investigation of single unit responses in the cochlear nuclei of bats (Vespertilionidae) to pure-tone and frequency-modulated stimuli overlapping in time showed that most (85%) of them respond to combination tones f2–f1 and 2f1–f2 (f1 is the filling frequency of the first and f2 of the second cone) resulting from nonlinearity in the auditory system. As a rule responses appeared whenever the frequency of the combination tone was close to the characteristic frequency of the neuron, regardless of the filling frequency of the basic tones. It is postulated that nonlinearity in the auditory system may lie at the basis of analysis of complex frequency-modulated stimuli.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 252–260, May–June, 1978. 相似文献