首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SecY, SecE and SecG form the membrane-embedded core complex of the Escherichia coli protein export apparatus. These three proteins co-purify and can be co-immunoprecipitated, demonstrating that they are closely associated. While SecE and SecY are generally accepted as essential components of translocase, the role of SecG is more ambiguous. It is commonly believed that deletion of secG causes a cold-sensitive phenotype and a severe defect in export, even though some reports have indicated otherwise. However, we demonstrate that deletion of secG does not produce a cold-sensitive phenotype or a strong export defect in most genetic backgrounds. The more common result is that deletion of secG causes only a mild export defect and does not result in conditional lethality. We propose that the role of SecG is not fundamental to the export process, but is merely auxiliary – as suggested previously by biochemical data – and is physiologically important only when cells are otherwise compromised. Received: 22 July 1999 / Accepted: 11 November 1999  相似文献   

2.
Yi L  Jiang F  Chen M  Cain B  Bolhuis A  Dalbey RE 《Biochemistry》2003,42(35):10537-10544
YidC was previously discovered to play a critical role for the insertion of the Sec-independent M13 procoat and Pf3 coat phage proteins into the Escherichia coli inner membrane. To determine whether there is an absolute requirement of YidC for membrane protein insertion of any endogenous E. coli proteins, we investigated a few representative membrane proteins. We found that membrane subunits of the F(0) sector of the F(1)F(0)ATP synthase and the SecE protein of the SecYEG translocase are highly dependent on YidC for membrane insertion, based on protease mapping and immunoblot analysis. We found that the SecE dependency on YidC for membrane insertion does not contradict the observation that depletion of YidC does not block SecYEG-dependent protein export at 37 degrees C. YidC depletion does not decrease the SecE level low enough to block export at 37 degrees C. In contrast, we found that protein export of OmpA is severely blocked at 25 degrees C when YidC is depleted, which may be due to the decreased SecE level, as a 50% decrease in the SecE levels drastically affects protein export at the cold temperature [Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) EMBO J. 10, 1749-57]. These studies reported here establish that physiological substrates of YidC include subunits of the ATP synthase and the SecYEG translocase, demonstrating that YidC plays a vital role for insertion of endogenous membrane proteins in bacteria.  相似文献   

3.
Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identified through genetic analysis. Sequence comparison of the Bacillus chromosome identified a potential homologue of SecG, termed YvaL. A chromosomal disruption of the yvaL gene results in mild cold sensitivity and causes a beta-lactamase secretion defect. The cold sensitivity is exacerbated by overexpression of the secretory protein alpha-amylase, whereas growth and beta-lactamase secretion are restored by coexpression of yvaL or the E. coli secG gene. These results indicate that the yvaL gene codes for a protein that is functionally homologous to SecG.  相似文献   

4.
SecY and SecE are integral cytoplasmic membrane proteins that form an essential part of the protein translocation machinery in Escherichia coli. Sites of direct contact between these two proteins have been suggested by the allele-specific synthetic phenotypes exhibited by pairwise combinations of prlA and prlG signal sequence suppressor mutations in these genes. We have introduced cysteine residues within the first periplasmic loop of SecY and the second periplasmic loop of SecE, at a specific pair of positions identified by this genetic interaction. The expression of the cysteine mutant pair results in a dominant lethal phenotype that requires the presence of DsbA, which catalyzes the formation of disulfide bonds. A reducible SecY-SecE complex is also observed, demonstrating that these amino acids must be sufficiently proximal to form a disulfide bond. The use of cysteine-scanning mutagenesis enabled a second contact site to be discovered. Together, these two points of contact allow the modeling of a limited region of quaternary structure, establishing the first characterized site of interaction between these two proteins. This study proves that actual points of protein-protein contact can be identified by using synthetic phenotypes.  相似文献   

5.
The apparatus responsible for translocation of proteins across bacterial membranes is the conserved SecY complex, consisting of SecY, SecE, and SecG. Prior genetic analysis provided insight into the mechanisms of protein export, as well as the interactions between the component proteins. In particular, the prl suppressor alleles of secE and secY, which allow export of secretory proteins with defective signal sequences, have proven particularly useful. Here, we report the isolation of novel mutations in secE and secY, as well as the phenotypic effects of combinations of prl mutations. These new alleles, as well as previously characterized prl mutations, were analyzed in light of the recently published crystal structure of the archaeal SecY complex. Our results support and expand a model of Prl suppressor activity that proposes that all of the prlA and prlG alleles either destabilize the closed state of the channel or stabilize the open form. These mutants thus allow channel opening to occur without the triggering event of signal sequence binding that is required in a wild-type complex.  相似文献   

6.
J Kim  Y Lee  C Kim    C Park 《Journal of bacteriology》1992,174(16):5219-5227
Ribose-binding protein (RBP) is an exported protein of Escherichia coli that functions in the periplasm. The export of RBP involves the secretion machinery of the cell, consisting of a cytoplasmic protein, SecA, and the integral membrane translocation complex, including SecE and SecY. SecB protein, a chaperone known to mediate the export of some periplasmic and outer membrane proteins, was previously reported not to be involved in RBP translocation even though small amounts of in vitro complexes between SecB and RBP have been detected. In our investigation, it was shown that a dependence on SecB could be demonstrated under conditions in which export was compromised. Species of RBP which carry two mutations, one in the leader that blocks export and a second in the mature protein which partially suppresses the export defect, were shown to be affected by SecB for efficient translocation. Five different changes which suppress the effect of the signal sequence mutation -17LP are all located in the N domain of the tertiary structure of RBP. All species of RBP show similar interaction with SecB. Furthermore, a leaky mutation, -14AE, generated by site-specific mutagenesis causes reduced export in the absence of SecB. These results indicate that SecB can interact with RBP during secretion, although it is not absolutely required under normal circumstances.  相似文献   

7.
SecYEG functions as a membrane channel for protein export. SecY constitutes the protein-conducting pore, which is enwrapped by SecE in a V-shaped manner. In its minimal form SecE consists of a single transmembrane segment that is connected to a surface-exposed amphipathic α-helix via a flexible hinge. These two domains are the major sites of interaction between SecE and SecY. Specific cleavage of SecE at the hinge region, which destroys the interaction between the two SecE domains, reduced translocation. When SecE and SecY were disulfide bonded at the two sites of interaction, protein translocation was not affected. This suggests that the SecY and SecE interactions are static, while the hinge region provides flexibility to allow the SecY pore to open.  相似文献   

8.
secD, a new gene involved in protein export in Escherichia coli.   总被引:47,自引:26,他引:21       下载免费PDF全文
New mutants of Escherichia coli altered in protein export were identified in phoA-lacZ and lamB-lacZ gene fusion strains by searching for mutants that showed an altered lactose phenotype. Several mutations mapped in a new gene, secD. These mutants were, in general, cold sensitive for growth, and the mutations led to an accumulation of precursor of exported proteins. The secD gene is closely linked to tsx on the E. coli chromosome, but separable from another gene proposed to be involved in export, ssaD, which maps nearby. A plasmid carrying secD+ was identified and used to show that the mutations are recessive. The secD gene may code for a component of the cellular export machinery.  相似文献   

9.
Protein export to the bacterial periplasm is achieved by SecYEG, an inner membrane heterotrimer. SecY and SecE are encoded by essential genes, while SecG is not essential for growth under standard laboratory conditions. Using a quantitative and sensitive export assay, we show that SecG plays a critical role for the residual export mediated by mutant signal sequences; the magnitude of this effect is not proportional to the strength of the export defect. In contrast, export mediated by wild-type signal sequences is only barely retarded in the absence of SecG. When probed with mutant signal sequences, secG loss of function mutations display a phenotype opposite to that of prlA mutations in secY. The analysis of secG and prlA single and double mutant strains shows that the increased export conferred by several prlA alleles is enhanced in the absence of SecG. Several combinations of prlA alleles with a secG deletion cannot be easily constructed. This synthetic phenotype is conditional, indicating that cells can adapt to the presence of both alleles. The biochemical basis of this phenomenon is linked to the stability of the SecYE dimer in solubilized membranes. With prlA alleles that can be normally introduced in a secG deletion strain, SecG has only a limited effect on the stability of the SecYE dimer. With the other prlA alleles, the SecYE dimer can often be detected only in the presence of SecG. A possible role for the maintenance of SecG during evolution is proposed.  相似文献   

10.
M Sugai  H C Wu 《Journal of bacteriology》1992,174(8):2511-2516
The export of major outer membrane lipoprotein has been found to be affected in secD, secE, and secF mutants of Escherichia coli, which are defective in protein export in general. After a shift to the nonpermissive temperature, the kinetics of accumulation of prolipoprotein and pre-OmpA protein was indistinguishable from that of pre-OmpA protein accumulation in the secD and secF mutants but different in the secE mutant. The prolipoprotein accumulated in the secD, secE, and secF mutants at the nonpermissive temperature was not modified with glyceride. We conclude from these results and those of previous studies that the export of lipoprotein requires all common sec gene products except the SecB protein, i.e., the SecA, SecD, SecE, SecF, and SecY proteins.  相似文献   

11.
Most extracytoplasmic proteins are synthesized with an N-terminal signal sequence that targets them to the export apparatus. Escherichia coli prlA mutants (altered in the secY gene) are able to export cell envelope proteins lacking any signal sequence. In order to understand how such proteins are targeted for export, we isolated mutations in a signal sequenceless version of alkaline phosphatase that block its export in a prlA mutant. The mutations introduce basic amino acyl residues near the N-terminus of alkaline phosphatase. These changes do not disrupt an N-terminal export signal in this protein since the first 25 amino acids can be removed without affecting its export competence. These findings suggest that signal sequenceless alkaline phosphatase does not contain a discrete domain that targets it for export and may be targeted simply because it remains unfolded in the cytoplasm. We propose that basic amino acids near the N-terminus of a signal sequenceless protein affect its insertion into the translocation apparatus after it has been targeted for export. These findings allow the formulation of a model for the entry of proteins into the membrane-embedded export machinery.  相似文献   

12.
Role of autolysins in the EDTA-induced lysis of Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
Abstract A DNA fragment containing the genes secE, nusG and rplK of Staphylococcus carnosus was cloned using the Escherichia coli rplK gene as a probe. The S. carnosus secE homologue encodes a protein of 65 amino acid residues which is homologous to the carboxyl-terminal region of the E. coli SecE protein. The S. carnosus SecE polypeptide which, in contrast to the E. coli SecE protein, contains only one putative transmembrane segment, could fully replace the E. coli SecE protein in two different secE mutants. These results strongly suggest that the identified secE gene encodes an important component of the S. carnosus protein export apparatus.  相似文献   

13.
Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm.  相似文献   

14.
A selection procedure is described that should allow the genetic identification of cellular components involved in the process of protein localization in Escherichia coli. This procedure makes use of mutations that alter the signal sequence of the λ receptor protein (product of the lamB gene), and prevent export of this protein to its normal outer membrane location. Several suppressor mutations have been identified that restore export of the mutant λ receptor protein. Mapping experiments show that the suppressor phenotype is the result of mutations in any of at least three different chromosomal loci. One class of suppressor mutations, the class containing the largest number of independent isolates, maps in the major ribosomal gene cluster, suggesting that the suppressor phenotype is the consequence of an altered ribosomal protein. This class of suppressors phenotypically suppresses all known export-defective mutations, internal to the signal sequence region of the lamB gene. These results suggest that ribosomes play an important role in the export of λ receptor to the outer membrane.  相似文献   

15.
The gspB-secY2A2 locus of Streptococcus gordonii strain M99 encodes the platelet-binding glycoprotein GspB, along with proteins that mediate its glycosylation and export. We have identified two additional components of the accessory Sec system (Asp4 and Asp5) encoded just downstream of gtfB in the gspB-secY2A2 locus. These proteins are required for GspB export and for normal levels of platelet binding by M99. Asp4 and Asp5 may be functional homologues of SecE and SecG, respectively.  相似文献   

16.
Strains in which the lacZ gene (which specifies beta-galactosidase) is fused to a gene encoding an envelope protein often exhibit a phenotype termed overproduction lethality. In such strains, high-level synthesis of the cognate hybrid protein interferes with the process of protein export, and this leads ultimately to cell death. A variation of this phenomenon has been discovered with lacZ fusions to the gene specifying the major outer membrane porin protein OmpF. In this case, we find that lambda transducing phage carrying an ompF-lacZ fusion will not grow on a host strain that constitutively overexpresses ompF. We have exploited this observation to develop a selection for ompF mutants. Using this protocol, we have isolated mutants altered in ompF expression and have identified mutations that block OmpF export. Our results suggest that it should be possible to adapt this selection for use with other genes specifying exported proteins.  相似文献   

17.
The Tat system is a recently discovered protein export pathway that serves to translocate folded proteins, often containing redox cofactors, across the bacterial cytoplasmic membrane. Here we report that tat strains are associated with a mutant cell septation phenotype, where chains of up to 10 cells are evident. Mutant strains are also hypersensitive to hydrophobic drugs and to lysis by lysozyme in the absence of EDTA, and they leak periplasmic enzymes, characteristics that are consistent with an outer membrane defect. Both phenotypes are similar to those displayed by strains carrying point mutations in the lpxC (envA) gene. The phenotype was not replicated by mutations affecting synthesis and/or activity of all known or predicted Tat substrates.  相似文献   

18.
The human malarial parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within its host erythrocyte, including the cytoplasm, the plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. While there is some information regarding the signals that allot proteins for export, the trafficking route itself has remained largely obscure, partly due to technical limitations in following protein trafficking with time. To overcome these shortcomings, we have established a conditional protein export system in P. falciparum, based on the previously described conditional aggregation domain (CAD domain) that self-aggregates in the endoplasmic reticulum in a manner that is reversible by the addition of a small molecule. By fusing the CAD domain to the first 80 amino acids of STEVOR and full-length PfSBP1, we were able to control export of a soluble and a transmembrane protein to the erythrocyte cytosol and the Maurer's clefts respectively. The conditional export system allowed us to study the temporal sequence of events of protein export and identify intermediate steps. We further explored the potential of the conditional export system in identifying factors that interact with exported proteins en route. Our data provide evidence for a physical interaction of exported proteins with the molecular chaperone PfBiP during early export steps.  相似文献   

19.
The E. coli secE (prlG) gene codes for an integral cytoplasmic membrane protein which is part of the cell's secretory machinery. A deletion of nearly the entire gene renders the cell dependent on the presence of a complementing secE+ plasmid, indicating that the SecE protein is essential for growth. Deletions which remove carboxy-terminal sequences or substantial amounts near the amino-terminus of SecE can still complement the lethal deletion. This deletion analysis suggests that the essential domain of the SecE protein includes only a single one of its three hydrophobic membrane-spanning segments. Two of three dominant prlG signal sequence suppressors map to this segment. Consistent with the insensitivity of SecE to major structural changes, several cold-sensitive mutations cause lethality not because of any change in the protein, but because of a reduction in its level of expression. Our results suggest that higher levels of the protein are needed at the lower temperature. These findings are discussed in terms of the interactions between various components of the secretory machinery.  相似文献   

20.
We previously reported (Shiba et al., J. Bacteriol. 160:696-701, 1984) the isolation and characterization of the mutation (ssy) that suppresses the protein export defect due to the secY24(Ts) mutation and causes cold-sensitive growth of Escherichia coli. This report describes more systematic isolation of ssy mutations. Among temperature-resistant revertants of the secY24 mutant, 65 mutants were found to be cold sensitive. These cold-sensitive mutations have been classified by genetic mapping. Twenty-two mutations fell into the ssyA class previously described. The remaining mutations were located at five new loci: ssyB at 9.5 min between tsx and lon; ssyD around 3 min; ssyE at 72.5 min near secY; ssyF at 20.5 min within rpsA; and ssyG at 69.0 min near argG. Two predominant classes, ssyA and ssyB, are probably affected in protein synthesis at the elongation step, whereas the ssyF mutant contained an altered form of ribosomal protein S1 (the gene product of rpsA). These cold-sensitive ssy mutations which suppress secY24 may define genes whose function is somehow involved in the secY-dependent protein secretion mechanism. However, the existence of multiple suppressor loci makes it unlikely that all of these genes specify additional components of the export machinery. A delicate balance may exist between the systems for synthesizing and exporting proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号