首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstructing the ancestral characteristics of species is a major goal in evolutionary and comparative biology. Unfortunately, fossils are not always available and sufficiently informative, and phylogenetic methods based on models of character evolution can be unsatisfactory. Genomic data offer a new opportunity to estimate ancestral character states, through (i) the correlation between DNA evolutionary processes and species life‐history traits and (ii) available reliable methods for ancestral sequence inference. Here, we assess the relevance of mitochondrial DNA – the most popular molecular marker in animals – as a predictor of ancestral life‐history traits in mammals, using the order of Cetartiodactyla as a benchmark. Using the complete set of 13 mitochondrial protein‐coding genes, we show that the lineage‐specific nonsynonymous over synonymous substitution rate ratio (dN/dS) is closely correlated with the species body mass, longevity and age of sexual maturity in Cetartiodactyla and can be used as a marker of ancestral traits provided that the noise introduced by short branches is appropriately dealt with. Based on ancestral dN/dS estimates, we predict that the first cetartiodactyls were relatively small animals (around 20 kg). This finding is in accordance with Cope's rule and the fossil record but could not be recovered via continuous character evolution methods.  相似文献   

2.
Much recent progress in evolutionary biology is based on the inference of ancestral states and past transformations in important traits on phylogenetic trees. These exercises often assume that the tree is known without error and that ancestral states and character change can be mapped onto it exactly. In reality, there is often considerable uncertainty about both the tree and the character mapping. Recently introduced Bayesian statistical methods enable the study of character evolution while simultaneously accounting for both phylogenetic and mapping uncertainty, adding much needed credibility to the reconstruction of evolutionary history.  相似文献   

3.

Background  

Modern-day proteins were selected during long evolutionary history as descendants of ancient life forms. In silico reconstruction of such ancestral protein sequences facilitates our understanding of evolutionary processes, protein classification and biological function. Additionally, reconstructed ancestral protein sequences could serve to fill in sequence space thus aiding remote homology inference.  相似文献   

4.
In this study, we examined diversification history of Rheum and tested the hypothesis that morphological traits related to plant 'body-plans' evolved in parallel in this genus. We sequenced eight chloroplast DNA fragments (representing more than 8000 bps of the sequence for each species) of 34 species from the genus and 13 species from closely related genera. Phylogenetic analyses indicate that all species of Rheum form a monophyletic lineage sister to the two-species genus Oxyria, indicating that radiative diversifications have occurred in its evolutionary history. Our dating analyses further suggest that these radiations largely coincided with the extensive uplifts of the Qinghai-Tibetan Plateau (QTP). Ancestral state reconstruction and likelihood sensitivity tests strongly indicate that both decumbent and 'glasshouse-like' body-plan traits evolved in parallel in different clades. Our findings highlight the importance of the uplift of the QTP in promoting species diversification and the parallel evolution of morphological traits that are putatively adaptive during such an evolutionary history.  相似文献   

5.
A resurrection ecology reconstruction of 14 morphological, life history and behavioural traits revealed that a natural Daphnia magna population rapidly tracked changes in fish predation by integrating phenotypic plasticity and widespread evolutionary changes both in mean trait values and in trait plasticity. Increased fish predation mainly generated rapid adaptive evolution of plasticity (especially in the presence of maladaptive ancestral plasticity) resulting in an important change in the magnitude and direction of the multivariate reaction norm. Subsequent relaxation of the fish predation pressure resulted in reversed phenotypic plasticity and mainly caused evolution of the trait means towards the ancestral pre‐fish means. Relaxation from fish predation did, however, not result in a complete reversal to the ancestral fishless multivariate phenotype. Our study emphasises that the study population rapidly tracked environmental changes through a mosaic of plasticity, evolution of trait means and evolution of plasticity to generate integrated phenotypic changes in multiple traits.  相似文献   

6.
A critical step in studying biological features (e.g., genetic variants, gene families, metabolic capabilities, or taxa) is assessing their diversity and distribution among a sample of individuals. Accurate assessments of these patterns are essential for linking features to traits or outcomes of interest and understanding their functional impact. Consequently, it is of crucial importance that the measures employed for quantifying feature diversity can perform robustly under any evolutionary scenario. However, the standard measures used for quantifying and comparing the distribution of features, such as prevalence, phylogenetic diversity, and related approaches, either do not take into consideration evolutionary history, or assume strictly vertical patterns of inheritance. Consequently, these approaches cannot accurately assess diversity for features that have undergone recombination or horizontal transfer. To address this issue, we have devised RecPD, a novel recombination-aware phylogenetic-diversity statistic for measuring the distribution and diversity of features under all evolutionary scenarios. RecPD utilizes ancestral-state reconstruction to map the presence / absence of features onto ancestral nodes in a species tree, and then identifies potential recombination events in the evolutionary history of the feature. We also derive several related measures from RecPD that can be used to assess and quantify evolutionary dynamics and correlation of feature evolutionary histories. We used simulation studies to show that RecPD reliably reconstructs feature evolutionary histories under diverse recombination and loss scenarios. We then applied RecPD in two diverse real-world scenarios including a preliminary study type III effector protein families secreted by the plant pathogenic bacterium Pseudomonas syringae and growth phenotypes of the Pseudomonas genus and demonstrate that prevalence is an inadequate measure that obscures the potential impact of recombination. We believe RecPD will have broad utility for revealing and quantifying complex evolutionary processes for features at any biological level.  相似文献   

7.
Evolutionary biology is a study of life's history on Earth. In researching this history, biologists are often interested in attempting to reconstruct phenotypes for the long extinct ancestors of living species. Various methods have been developed to do this on a phylogeny from the data for extant taxa. In the present article, I introduce a new approach for ancestral character estimation for discretely valued traits. This approach is based on the threshold model from evolutionary quantitative genetics. Under the threshold model, the value exhibited by an individual or species for a discrete character is determined by an underlying, unobserved continuous trait called “liability.” In this new method for ancestral state reconstruction, I use Bayesian Markov chain Monte Carlo (MCMC) to sample the liabilities of ancestral and tip species, and the relative positions of two or more thresholds, from their joint posterior probability distribution. Using data simulated under the model, I find that the method has very good performance in ancestral character estimation. Use of the threshold model for ancestral state reconstruction relies on a priori specification of the order of the discrete character states along the liability axis. I test the use of a Bayesian MCMC information theoretic criterion based approach to choose among different hypothesized orderings for the discrete character. Finally, I apply the method to the evolution of feeding mode in centrarchid fishes.  相似文献   

8.
The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.  相似文献   

9.
We examine a simple model of state-dependent (indicator) traits that focuses on their evolutionary origins as courtship signals. A necessary condition for the initial evolution of signals was found: the marginal female preference for minimal traits must exceed a certain threshold, where that threshold is proportional to the marginal male fitness costs for minimal traits. We interpret a positive threshold as implying a need for preexisting sensory bias in order to overcome the threshold if indicator signals are to start to evolve. We extend the model to allow for the possibility that signal costs and female preferences may vary over evolutionary time. If there is independent information on the way that signaling costs have evolved, then one may use measurements of contemporary female preferences to make inferences concerning the presence of the ancestral threshold. It is the marginal female preferences for minimal male traits that are important, whereas reconstructing ancestral origins from measurement of average size signals is not informative. Our analyses suggest two foci for future studies: measurement of the marginal response of contemporary females to minimal male signals and reconstruction of how signaling costs have changed over evolutionary time.  相似文献   

10.
Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.  相似文献   

11.
1. Non-trophic interactions between plants and animals can affect community structure and species trait composition. However, it is unclear how changes in intra- and interspecific morphological traits of plant species affect non-trophic interactions at a metacommunity scale. Additionally, whether plant evolutionary history determines taxonomic and functional diversity of plant-dwelling predators is an open question. 2. To address these gaps, this study used a published dataset with spiders dwelling exclusively on bromeliads to investigate if: (i) intra- and interspecific variability in host plant morphological traits affects spider taxonomic and functional diversity; and (ii) bromeliad trait evolution determines present-day patterns of spider trait diversity. 3. Spider and bromeliad traits were measured, and a new statistical framework was used to quantify the response of spider beta diversity to intra- and interspecific variation in bromeliad traits. In addition, bromeliad traits were decomposed across its phylogenetic tree to check whether the current variation in morphological traits of bromeliads is a result of either ancestral or recent diversification. 4. Bromeliad intraspecific variation did not affect spiders, but leaf length variation between bromeliad species had a positive effect on spider functional beta diversity. Interestingly, the most ancestral split between two subfamilies explained most of the variation in bromeliad species, which suggests that spider functional diversity could represent an outcome of bromeliad evolutionary history. 5. Overall, the results of this study suggest that interactions between plants and organisms that do not feed directly on their tissues could be shaped by plant evolutionary history, which in turn suggests that non-trophic interactions can be maintained over time.  相似文献   

12.
13.
Whether or not ancestral species can be recognised depends on the species concept adopted. A “metaspecies”; is a species that completely lacks autapomorphies, and which might (or might not) be ancestral to other species. Such taxa have been identified among both living and fossil organisms. Under the most commonly‐used species concepts (biological, evolutionary, phenetic, phylogenetic, ecological, recognition and cohesion), “metaspecies”; can be assumed to be ancestral. Even if the known members of a metaspecies are not ancestral to anything, parsimony dictates that the (as yet unknown) ancestral lineage is identical to the metaspecies and, under these species concepts, assignable to the same species. Only the cladistic and monophyletic species concepts would deny “metaspecies”; ancestral status, but these species concepts are problematical and have never been used by practising systematists.  相似文献   

14.
Compared with plants and animals, large‐scale biogeographic patterns of microbes including fungi are poorly understood. By the use of a comparative phylogenetic approach and ancestral state reconstructions, we addressed the global biogeography, rate of evolution and evolutionary origin of the widely distributed ectomycorrhizal (EcM) /sebacina lineage that forms a large proportion of the Sebacinales order. We downloaded all publicly available internal transcribed spacer (ITS) sequences and metadata and supplemented sequence information from three genes to construct dated phylogenies and test biogeographic hypotheses. The /sebacina lineage evolved 45–57 Myr ago that groups it with relatively young EcM taxa in other studies. The most parsimonious origin for /sebacina is inferred to be North American temperate coniferous forests. Among biogeographic traits, region and biome exhibited stronger phylogenetic signal than host family. Consistent with the resource availability (environmental energy) hypothesis, the ITS region is evolving at a faster rate in tropical than nontropical regions. Most biogeographic regions exhibited substantial phylogenetic clustering suggesting a strong impact of dispersal limitation over a large geographic scale. In northern Holarctic regions, however, phylogenetic distances and phylogenetic grouping of isolates indicate multiple recent dispersal events.  相似文献   

15.
Squirrelfishes and soldierfishes (Holocentridae) are among the most conspicuous species in the nocturnal reef fish community. However, there is no clear consensus regarding their evolutionary relationships, which is reflected in a complicated taxonomic history. We collected DNA sequence data from multiple single copy nuclear genes and one mitochondrial gene sampled from over fifty percent of the recognized holocentrid species and infer the first species-level phylogeny of the Holocentridae. Our results strongly support the monophyly of the clades Myripristinae (soldierfishes) and Holocentrinae (squirrelfishes). The molecular phylogenies differ with regard to previous hypotheses of relationships within the Myriprisitinae, resolving a clade of cryptic reef associated and deep water non-reef dwelling lineages (Corniger+Plectrypops+Ostichthys) that is the sister lineage to a monophyletic Myripristis. Within Holocentrinae, Neoniphon and Sargocentron are strongly supported as paraphyletic, while Holocentrus is nested within Sargocentron. Using Bayesian ancestral state reconstruction methods, we demonstrate the taxonomically diagnostic characters for Neoniphon and Sargocentron likely represent character states with a complex evolutionary history that is not reflective of shared common ancestry. We propose a new classification for Holocentrinae, recognizing four lineages that are treated as genera: SargocentronFowler, 1904, HolocentrusScopoli, 1777, FlameoJordan and Evermann, 1898, and NeoniphonCastelnau, 1875.  相似文献   

16.
Aim We use parametric biogeographical reconstruction based on an extensive DNA sequence dataset to characterize the spatio‐temporal pattern of colonization of the Old World monarch flycatchers (Monarchidae). We then use this framework to examine the role of dispersal and colonization in their evolutionary diversification and to compare plumages between island and continental Terpsiphone species. Location Africa, Asia and the Indian Ocean. Methods We generate a DNA sequence dataset of 2300 bp comprising one nuclear and three mitochondrial markers for 89% (17/19) of the Old World Monarchidae species and 70% of the Terpsiphone subspecies. By applying maximum likelihood and Bayesian phylogenetic methods and implementing a Bayesian molecular clock to provide a temporal framework, we reveal the evolutionary history of the group. Furthermore, we employ both Lagrange and Bayes‐ Lagrange analyses to assess ancestral areas at each node of the phylogeny. By combining the ancestral area reconstruction with information on plumage traits we are able to compare patterns of plumage evolution on islands and continents. Results We provide the first comprehensive molecular phylogenetic reconstruction for the Old World Monarchidae. Our phylogenetic results reveal a relatively recent diversification associated with several dispersal events within this group. Moreover, ancestral area analyses reveal an Asian origin of the Indian Ocean and African clades. Ancestral state reconstruction analyses of plumage characters provide an interpretation of the plumage differentiation on islands and continents. Ancestral plumage traits are inferred to be close to those of the Asian paradise‐flycatcher (Terpsiphone paradisi), and island species display a high degree of plumage autapomorphy compared with continental species. Main conclusions Terpsiphone paradisi is polyphyletic and comprises populations that have retained the ancestral plumage of the widespread Terpsiphone genus. The genus appears to have colonized south‐west Asia, the Indian Ocean and Africa from eastern Asia. The phylogeny and divergence time estimates indicate multiple simultaneous colonizations of the western Old World by Terpsiphone. These results reinforce a hypothesis of range expansions of a Terpsiphone paradisi‐like ancestor into eastern Asia and the western Old World.  相似文献   

17.
We review a series of related publications that combine higher‐level phylogenies of weevils (Coleoptera: Curculionoidea) with host plant information to explain the success of this megadiverse lineage in the context of a co‐evolutionary escape‐and‐radiation hypothesis. We argue that the authors' approach is marred by the cumulative effect of: (1) inadequate taxon sampling, particularly within the most diverse family Curculionidae; (2) insufficient reconciliation of systematic evidence, including the reassessment of morphological characters and necessary classificatory emendations; (3) exceedingly wide concepts of ecological similarity, leading to uninformative tests of adaptation; (4) insufficient resolution of the temporal sequence of associated weevil and angiosperm radiations; and (5) inadequate consideration of alternatives to the escape‐and‐radiation hypothesis. As a result, there are very few new and reliable inferences about the evolutionary success of weevils that depend precisely on the phylogenetic data presented in these studies. Improved taxon sampling alone is not the solution, because the existing mid‐level classification of weevils is too deficient to permit inferences about natural lineages and their ancestral traits. We therefore recommend abandoning such an approach in favour of more narrowly focused reconstructions of the evolutionary history of generic and tribal groupings.  相似文献   

18.
GeneTRACE-reconstruction of gene content of ancestral species   总被引:4,自引:0,他引:4  
While current computational methods allow the reconstruction of individual ancestral protein sequences, reconstruction of complete gene content of ancestral species is not yet an established task. In this paper, we describe GENETRACE, an efficient linear-time algorithm that allows the reconstruction of evolutionary history of individual protein families as well as the complete gene content of ancestral species. The performance of the method was validated with a simulated evolution program called SimulEv. Our results indicate that given a set of correct phylogenetic profiles and a correct species tree, ancestral gene content can be reconstructed with sensitivity and selectivity of more than 90%. SimulEv simulations were also used to evaluate performance of the reconstruction of gene content-based phylogenetic trees, suggesting that these trees may be accurate at the terminal branches but suffer from long branch attraction near the root of the tree.  相似文献   

19.
Batesian mimicry is a fundamental example of adaptive phenotypic evolution driven by strong natural selection. Given the potentially dramatic impacts of selection on individual fitness, it is important to understand the conditions under which mimicry is maintained versus lost. Although much empirical and theoretical work has been devoted to the maintenance of Batesian mimicry, there are no conclusive examples of its loss in natural populations. Recently, it has been proposed that non-mimetic populations of the polytypic Limenitis arthemis species complex represent an evolutionary loss of Batesian mimicry, and a reversion to the ancestral phenotype. Here, we evaluate this conclusion using segregating amplified fragment length polymorphism markers to investigate the history and fate of mimicry among forms of the L. arthemis complex and closely related Nearctic Limenitis species. In contrast to the previous finding, our results support a single origin of mimicry within the L. arthemis complex and the retention of the ancestral white-banded form in non-mimetic populations. Our finding is based on a genome-wide sampling approach to phylogeny reconstruction that highlights the challenges associated with inferring the evolutionary relationships among recently diverged species or populations (i.e. incomplete lineage sorting, introgressive hybridization and/or selection).  相似文献   

20.
During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号