首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autofluorescent substance monodansylcadaverine has recently been reported as a specific in vivo marker for autophagic vacuoles. However, the mechanism for this specific labeling remained unclear. Our results reveal that the common model of ion trapping in acidic compartments cannot completely account for the observed autophagic vacuole staining. Because autophagic vacuoles are characterized by myelin-like membrane inclusions, we tested whether this lipid-rich environment is responsible for the staining properties of monodansylcadaverine. In in vitro experiments using either liposomes or solvents of different polarity, monodansylcadaverine showed an increased relative fluorescence intensity in a hydrophobic environment as well as a Stokes shift dependent on the solvent polarity. To test the effect of autophagic vacuoles or autophagic vacuole lipids on monodansylcadaverine fluorescence, we isolated autophagic vacuoles and purified autophagic vacuole lipids depleted of proteins. Entire autophagic vacuoles and autophagic vacuole lipids had the same effect on monodansylcadaverine fluorescence properties, suggesting lipids as the responsible component. Our results suggest that the in vivo fluorescence properties of monodansylcadaverine do not depend exclusively on accumulation in acidic compartments by ion trapping but also on an effective interaction of this molecule with autophagic vacuole membrane lipids. (J Histochem Cytochem 48:251-258, 2000)  相似文献   

2.
Abstract. Vital staining of differentiating slime mold cells of Dictyostelium discoideum was studied, with reference to autophagic vacuoles they contain. By microscopically comparing within individual cells neutral-red staining granules with acid phosphatase positive granules, we identified vitally stained granules as autophagic vacuoles. At the early stages of differentiation, although the majority of cells were strongly acid phosphatase positive and there was little difference in the number of autophagic vacuoles between prestalk and prespore cells, only the former (about 25% of the total) were strongly vitally stained. It was thus concluded that autophagic vacuoles of prestalk cells are intensely stained with neutral-red while those of prespore cells are only weakly stained. Strong vital staining of prestalk cells was bleached by lysosomotropic agents such as NH4Cl, methylamine, and chloroquine which are known to increase intra-lysosomal pH. This suggests that autophagic vacuoles of prestalk cells are strongly stained because of their acidity.  相似文献   

3.
Previous study demonstrates that intracerebral hemorrhage (ICH) promotes microglia activation and inflammation. However, the exact mechanism of microglia activation induced by ICH is not clear. In this experiment, microglia autophagy was examined using electron microscopy, conversion of light chain 3(LC3), and monodansylcadaverine (MDC) staining to detect autophagic vacuoles. We found that ICH induced microglia autophagy and activation. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (BECN1 and ATG5) decreased the microglia activation and inflammation in ICH. Moreover, autophagy inhibitors reduced brain damage in ICH. In conclusion, these data indicate that ICH contributes to microglia autophagic activation through BECN1 and ATG5 and provide the therapeutical strategy for ICH.  相似文献   

4.
《Autophagy》2013,9(1):23-36
Autophagy has been implicated in a range of disorders and hence is of major interest. However, imaging autophagy in real time has been hampered by lack of suitable markers. We have compared the potential of monodansylcadaverine, widely used as an autophagosomal marker, and the Atg8 homologue LC3, to follow autophagy by fluorescence microscopy whilst labelling late endosomes and lysosomes simultaneously using EGFP-CD63. Monodansylcadaverine labelled only acidic CD63-positive compartments in response to a range of autophagic inducers in various live or post-fixed cells, staining being identical in atg5+/+ and atg5-/- MEFs in which autophagosome formation is disabled. Monodansylcadaverine staining was essentially indistinguishable from that of LysoTracker Red, LAMP1 or LAMP2. In contrast, 60-90% of EGFP-LC3-positive punctate organelles did not colocalise with LAMP1/LAMP2/CD63 and were monodansylcadaverine-negative while EGFP-LC3 puncta that did colocalise with LAMP1/LAMP2/CD63 were also monodansylcadaverine-positive. Hence monodansylcadaverine is no different from other markers of acidic compartments and it cannot be used to follow autophagosome formation. In contrast, fusion of mRFP-LC3-labelled autophagosomes with EGFP-CD63-positive endosomes and lysosomes and sequestration of dsRed-labelled mitochondria by EGFP-LC3- and EGFP-CD63-positive compartments could be visualised in real time. Moreover, transition of EGFP-LC3-I (45 kDa) to EGFP-LC3-II (43 kDa) - traced by immunoblotting and verified by [3H]ethanolamine labelling - revealed novel insights into the dynamics of autophagosome homeostasis, including the rapid activation of autophagy by the apoptotic inducer staurosporine prior to apoptosis proper. Use of fluorescent LC3 and a counterfluorescent endosomal/lysosomal protein clearly allows the entire autophagic process to be followed by live cell imaging with high fidelity.  相似文献   

5.
Autophagy has been implicated in a range of disorders and hence is of major interest. However, imaging autophagy in real time has been hampered by lack of suitable markers. We have compared the potential of monodansylcadaverine, widely used as an autophagosomal marker, and the Atg8 homologue LC3, to follow autophagy by fluorescence microscopy whilst labelling late endosomes and lysosomes simultaneously using EGFP-CD63. Monodansylcadaverine labelled only acidic CD63-positive compartments in response to a range of autophagic inducers in various live or post-fixed cells, staining being identical in atg5(+/+) and atg5(-/-) MEFs in which autophagosome formation is disabled. Monodansylcadaverine staining was essentially indistinguishable from that of LysoTracker Red, LAMP-1 or LAMP-2. In contrast, 60-90% of EGFP-LC3-positive punctate organelles did not colocalise with LAMP-1/LAMP-2/CD63 and were monodansylcadaverine-negative while EGFP-LC3 puncta that did colocalise with LAMP-1/LAMP-2/CD63 were also monodansylcadaverine-positive. Hence monodansylcadaverine is no different from other markers of acidic compartments and it cannot be used to follow autophagosome formation. In contrast, fusion of mRFP-LC3-labelled autophagosomes with EGFP-CD63-positive endosomes and lysosomes and sequestration of dsRed-labelled mitochondria by EGFP-LC3- and EGFP-CD63-positive compartments could be visualized in real time. Moreover, transition of EGFP-LC3-I (45 kDa) to EGFP-LC3-II (43 kDa)-traced by immunoblotting and verified by [(3)H]ethanolamine labelling-revealed novel insights into the dynamics of autophagosome homeostasis, including the rapid activation of autophagy by the apoptotic inducer staurosporine prior to apoptosis proper. Use of fluorescent LC3 and a counter-fluorescent endosomal/lysosomal protein clearly allows the entire autophagic process to be followed by live cell imaging with high fidelity.  相似文献   

6.
Autophagy, a highly conserved cellular mechanism wherein various cellular components are broken down and recycled through lysosomes, has been implicated in the development of heart failure. However, tools to measure autophagic flux in vivo have been limited. Here, we tested whether monodansylcadaverine (MDC) and the lysosomotropic drug chloroquine could be used to measure autophagic flux in both in vitro and in vivo model systems. Using HL-1 cardiac-derived myocytes transfected with GFP-tagged LC3 to track changes in autophagosome formation, autophagy was stimulated by mTOR inhibitor rapamycin. Administration of chloroquine to inhibit lysosomal activity enhanced the rapamycin-induced increase in the number of cells with numerous GFP-LC3-positive autophagosomes. The chloroquine-induced increase of autophagosomes occurred in a dose-dependent manner between 1 microM and 8 microM, and reached a maximum 2 hour after treatment. Chloroquine also enhanced the accumulation of autophagosomes in cells stimulated with hydrogen peroxide, while it attenuated that induced by Bafilomycin A1, an inhibitor of V-ATPase that interferes with fusion of autophagosomes with lysosomes. The accumulation of autophagosomes was inhibited by 3-methyladenine, which is known to inhibit the early phase of the autophagic process. Using transgenic mice expressing 3 mCherry-LC3 exposed to rapamycin for 4 hr, we observed an increase in mCherry-LC3-labeled autophagosomes in myocardium, which was further increased by concurrent administration of chloroquine, thus allowing determination of flux as a more precise measure of autophagic activity in vivo. MDC injected 1 hr before sacrifice colocalized with mCherry-LC3 puncta, validating its use as a marker of autophagosomes. This study describes a method to measure autophagic flux in vivo even in non-transgenic animals, using MDC and chloroquine.  相似文献   

7.

Aims

During the adipocyte differentiation, some intracellular organelles are degraded and instead lipid droplets are gradually accumulated in the cytoplasm for energy storage. Autophagy, a self-eating process, has been implicated in the removal of intracellular components in adipogenesis, but its mechanism is poorly understood. In this work we examined how α-lipoic acid modulates the autophagic process during the adipocyte differentiation.

Main methods

3T3-L1 pre-adipocytes were differentiated in the medium containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthine. Lipid contents in adipocytes were determined by Oil-Red O staining. Autophagy was evaluated by Western blotting, accumulation of acidic vacuoles in cells.

Key findings

We observed that formation of LC3-II, an indicative marker for autophagy, was greatly down-regulated at the beginning stage of differentiation, but it was gradually increased with respect to earlier differentiation time. In addition, ATG5-12 conjugates were similarly produced, and acidic autophagic vacuoles were greatly elevated at the earlier stages of differentiation. Furthermore, α-lipoic acid deteriorated the intracellular accumulation of lipid droplets by blocking the production of acidic autophagic vacuoles, LC3-II, and other autophagy-related proteins during the adipocyte differentiation and influenced expression of adipocyte-stimulating factors. It also specifically suppressed activation of AMPK, an essential modulator for autophagy, at the earlier step of adipocyte differentiation.

Significance

These data suggest that α-lipoic acid significantly attenuates adipocyte differentiation via the direct modulation of intracellular degradation process and consequently decrease intracellular fat deposit of adipocytes.  相似文献   

8.
The neurotrophin receptor tropomyosin-related kinase A (TrkA) and its ligand nerve growth factor (NGF) are expressed in astrocytomas, and an inverse association of TrkA expression with malignancy grade was described. We hypothesized that TrkA expression might confer a growth disadvantage to glioblastoma cells. To analyze TrkA function and signaling, we transfected human TrkA cDNA into the human glioblastoma cell line G55. We obtained three stable clones, all of which responded with striking cytoplasmic vacuolation and subsequent cell death to NGF. Analyzing the mechanism of cell death, we could exclude apoptosis and cellular senescence. Instead, we identified several indications of autophagy: electron microscopy showed typical autophagic vacuoles; acridine orange staining revealed acidic vesicular organelles; acidification of acidic vesicular organelles was prevented using bafilomycin A1; cells displayed arrest in G2/M; increased processing of LC3 occurred; vacuolation was prevented by the autophagy inhibitor 3-methyladenine; no caspase activation was detected. We further found that both activation of ERK and c-Jun N-terminal kinase but not p38 were involved in autophagic vacuolation. To conclude, we identified autophagy as a novel mechanism of NGF-induced cell death. Our findings suggest that TrkA activation in human glioblastomas might be beneficial therapeutically, especially as several of the currently used chemotherapeutics also induce autophagic cell death.  相似文献   

9.
Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation‐induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non‐diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho‐mammalian target of rapamycin, p62 and reduced expression of phospho‐AMP‐activated protein kinase and lysosomal membrane‐associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase‐3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.  相似文献   

10.
Rab GTPases comprises a large family of proteins, with more than 50 gene products localized in distinct subcellular compartments. Rab24 is a member of this family whose function is not presently known. In order to elucidate the role of this protein we have generated a GFP-tagged Rab24 and studied the distribution of this chimera by fluorescence microscopy. GFP-Rab24 showed a perinuclear reticular localization that often encircled the nucleus. This reticular pattern partially overlapped with ER markers, cis-Golgi, and the ER-Golgi intermediate compartment. Surprisingly, when GFP-Rab24-transfected cells were starved to induce autophagy the distribution of the protein changed dramatically. GFP-Rab24 localized in large dots, cup-shaped structures and ring-shaped vesicles. Some of these vesicles were labeled with monodansylcadaverine , a specific autophagosome marker. In the presence of vinblastine, an agent that induces the formation of very large autophagic vesicles, GFP-Rab24 accumulated in the large vacuoles that were also labeled by monodansylcadaverine. Furthermore, Rab24 colocalized with LC3, a mammalian homolog of the yeast protein Apg8/Aut7, an essential gene for autophagy. This is the first report indicating that Rab24 localizes on autophagosomes, suggesting that this Rab protein is involved in the autophagic pathway.  相似文献   

11.
The mechanisms of enzyme delivery to and acidification of early autophagic vacuoles in cultured fibroblasts were elucidated by cryoimmunoelectron microscopic methods. The cation-independent mannose-6-phosphate receptor (MPR) was used as a marker of the pre-lysosomal compartment, and cathepsin L and an acidotropic amine (3-(2,4-dinitroanilino)-3'-amino-N-methyl-dipropylamine (DAMP), a cytochemical probe for low-pH organelles) as markers of both pre-lysosomal and lysosomal compartments. In addition, cationized ferritin was used as an endocytic marker. In ultrastructural double labeling experiments, the bulk of all the antigens was found in vesicles containing tightly packed membrane material. These vesicles also contained small amounts of endocytosed ferritin and probably correspond to the MPR-enriched pre-lysosomal compartment. Some immunolabeling was also visible in the trans-Golgi network. In addition, cathepsin L, DAMP, and large amounts of ferritin were found in smaller vesicles which can be classified as mature lysosomes. Early autophagic vacuoles were defined as vesicles containing recognizable cytoplasm. MPR, cathepsin L, and DAMP, but not ferritin, were detected in the early vacuoles. Inhibition of the acidification in the early vacuoles by monensin did not prevent the delivery of MPR and cathepsin L. The presence of MPR in the vacuoles suggests that cathepsin L is not delivered to early autophagic vacuoles solely by fusion with mature, MPR-deficient lysosomes. Furthermore, although lysosomes were loaded with endocytosed ferritin, it was not detected in autophagic vacuoles. Either the trans-Golgi network or the MPR-enriched pre-lysosomes may be the main source of enzymes and acidification machinery for the autophagic vacuoles in fibroblasts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
《Autophagy》2013,9(3):322-329
Autophagy, a highly conserved cellular mechanism wherein various cellular components are broken down and recycled through lysosomes, has been implicated in the development of heart failure. However, tools to measure autophagic flux in vivo have been limited. Here, we tested whether monodansylcadaverine (MDC) and the lysosomotropic drug chloroquine could be used to measure autophagic flux in both in vitro and in vivo model systems. Using HL-1 cardiac-derived myocytes transfected with GFP-tagged LC3 to track changes in autophagosome formation, autophagy was stimulated by mTOR inhibitor rapamycin. Administration of chloroquine to inhibit lysosomal activity enhanced the rapamycin-induced increase in the number of cells with numerous GFP-LC3-positive autophagosomes. The chloroquine-induced increase of autophagosomes occurred in a dose-dependent manner between 1 µM and 8 µM, and reached a maximum 2 hour after treatment. Chloroquine also enhanced the accumulation of autophagosomes in cells stimulated with hydrogen peroxide, while it attenuated that induced by Bafilomycin A1, an inhibitor of V-ATPase that interferes with fusion of autophagosomes with lysosomes. The accumulation of autophagosomes was inhibited by 3-methyladenine, which is known to inhibit the early phase of the autophagic process. Using transgenic mice expressing mCherry-LC3 exposed to rapamycin for 4 hr, we observed an increase in mCherry-LC3-labeled autophagosomes in myocardium, which was further increased by concurrent administration of chloroquine, thus allowing determination of flux as a more precise measure of autophagic activity in vivo. MDC injected 1 hr before sacrifice colocalized with mCherry-LC3 puncta, validating its use as a marker of autophagosomes. This study describes a method to measure autophagic flux in vivo even in non-transgenic animals, using MDC and chloroquine.  相似文献   

13.
The site and mechanism of accumulation of acridine derivatives into platelets and their isolated organelles were investigated. In addition, their suitability as indicators of cytoplasmic pH was analysed. Direct microscopic observation showed that quinacrine and 9-aminoacridine are concentrated inside organelles in platelets. Using fractionation studies, the acridine derivatives were found to accumulate particularly in dense and α-granules. Uptake into these organelles is driven by a pH differential across their membrane (acidic inside). Because of their cellular distribution, acridine derivatives were found to be poor indicators of cytoplasmic pH. In contrast, a poorly permeant dicarboxylated fluorescein derivative, generated in situ by cytosolic enzymes, is shown to be a more reliable probe of intracellular pH. The results are compared with previous reports of the use of 9-aminoacridine as a cytoplasmic pH probe in platelets and of quinacrine as a selective dense-granule marker.  相似文献   

14.
The previous studies by this author group has shown that paclitaxel, a mitotic inhibitor used in breast cancer chemotherapy, inhibits cell growth via induction of Raf-1-dependent apoptosis. In this article, the role of autophagy in paclitaxel anticancer action was investigated using v-Ha-ras-transformed NIH 3T3 cells. Paclitaxel induced a notable increase in the number of fluorescent particles labeled with monodansylcadaverine (MDC), a specific marker for autophagic vacuoles. MDC-labeled vacuoles clearly exhibited the fluorescent-tagged LC3 in cells transiently overexpressing GFP-LC3 (a protein that associates with autophagosome membranes). However, autophagy inhibition with 3-methyladenine (3-MA) failed to rescue v-Ha-ras-transformed NIH 3T3 cells from paclitaxel-induced cell death. More interestingly, the apoptosis inhibition by overexpression of the X-linked inhibitor of apoptosis (XIAP) did not fully block the cell death by paclitaxel, implying that apoptosis inhibition might accelerate the autophagic components of the paclitaxel response. Conversely, Raf-1 shRNA expression protected against paclitaxel-induced cell death through the simultaneous inhibition of both autophagy and apoptosis. These results suggest that both autophagy and apoptosis act as cooperative partners to induce cell death in v-Ha-ras-transformed NIH 3T3 cells treated with paclitaxel.  相似文献   

15.
Yang HJ  Hsu CL  Yang JY  Yang WY 《PloS one》2012,7(3):e32693
Lipid droplets (LDs) are dynamic cellular organelles responsible for the storage of neutral lipids, and are associated with a multitude of metabolic syndromes. Here we report monodansylpentane (MDH) as a high contrast blue-fluorescent marker for LDs. The unique spectral properties make MDH easily combinable with other green and red fluorescent reporters for multicolor fluorescence imaging. MDH staining does not apparently affect LD trafficking, and the dye is extraordinarily photo-stable. Taken together MDH represents a reliable tool to use for the investigation of dynamic LD regulation within living cells using fluorescence microscopy.  相似文献   

16.
《Autophagy》2013,9(6):882-883
Yersinia pestis, a facultative intracellular bacterial pathogen, survives and replicates within macrophage phagosomes. Macrophages can use an autophagic pathway known as xenophagy to destroy pathogens in an acidic autolysosome or autophagolysosome. Yersinia-containing vacuoles (YCVs) in macrophages can acquire LC3, a marker of autophagic membranes. However, YCVs fail to acidify, which likely prevents their maturation to the autophagolysosome stage. We suggest that this process bypasses the cell’s attempt to use xenophagy to destroy the pathogen. It remains to be determined how Y. pestis blocks YCV acidification. Although autophagy is not required for Y. pestis survival in macrophages, it is possible that sequestration of autophagic membrane in YCVs allows the pathogen to induce cell death in the macrophage.  相似文献   

17.
《Autophagy》2013,9(4):449-454
Autophagy is a cellular stress response that results in the activation of a lysosomal degradation pathway. In this report, we showed that cationic lipids, a common-used class of transfection reagents, induced genuine autophagy in mammalian cells. Extensive LC3 dot formation was observed by treatment with cationic lipids (with or without DNA), but not neutral lipids, in a HeLa cell line stably expressing GFP-LC3 (HeLa-LC3). Further proofs for autophagy were obtained by the co-localization of the LC3 dots with lysosome-specific staining patterns, observation of LC3-I to LC3-II form conversion and appearance of autophagic vacuoles under TEM. The autophagic flux assay with bafilomycin A1 and degradation of p62/SQSTM1 suggested that the autophagy induced by cationic lipids was primarily due to increased formation of autophagosomes and not decreased turnover. Moreover, cationic lipids induced autophagy in an mTOR-independent manner.  相似文献   

18.
Intracisternal granules (ICGs) are insoluble aggregates of pancreatic digestive enzymes and proenzymes that develop within the lumen of the rough endoplasmic reticulum of exocrine pancreatic cells, especially in guinea pigs. These ICGs are eliminated by autophagy. By morphological criteria, we identified three distinct and sequential classes of autophagic compartments, which we refer to as phagophores, Type I autophagic vacuoles, and Type II autophagic vacuoles. Lobules of guinea pig pancreas were incubated in media containing HRP for periods of 5-120 min to determine the relationship between the endocytic and autophagic pathways. Incubations with HRP of 15 min or less labeled early endosomes at the cell periphery that were not involved in autophagy of ICGs, but after these short incubations none of the autophagic compartments were HRP positive. After 30-min incubation with HRP, early endosomes at the cell periphery, late endosomes in the pericentriolar region, and, in addition, Type I autophagic vacuoles containing ICGs were all labeled by the tracer. Type II autophagic vacuoles were not labeled after 30-min incubation with HRP but were labeled after incubations of 60-120 min. Phagophores did not receive HRP even after 120 min incubations. We concluded that the autophagic and endocytic pathways converge immediately after the early endosome level and that Type I autophagic vacuoles precede Type II autophagic vacuoles on the endocytic pathway. We studied the distribution of acid phosphatase, lysosomal proteases and cation-independent-mannose-6-phosphate receptor (CI-M6PR) in the three classes of autophagic compartments by histochemical and immunocytochemical methods. Phagophores, the earliest autophagic compartment, contained none of these markers. Type I autophagic vacuoles contained acid phosphatase but, at most, only very low levels of cathepsin D and CI-M6PR. Type II autophagic vacuoles, by contrast, are enriched for acid phosphatase, cathepsin D, and other lysosomal enzymes, and they are also enriched for CI-M6PR. Moreover, soluble fragments of bovine CI-M6PR conjugated to colloidal gold particles heavily labeled Type II but not Type I autophagic vacuoles, and this labeling was specifically blocked by mannose-6-phosphate. This indicates that the lysosomal enzymes present in Type II autophagic vacuoles carry mannose-6-phosphate monoester residues. Using 3-C2, 4-dinitroanilino-3'-amino-N-methyldipropylamine (DAMP), we showed that Type II autophagic vacuoles are acidic. We interpret these findings as indicating that Type II autophagic vacuoles are a prelysosomal compartment in which the already combined endocytic and autophagic pathways meet the delivery pathway of lysosomal enzymes.  相似文献   

19.
20.
Previous reports have indicated that the entry of Semliki Forest virus (SFV) into cells depends on a membrane fusion reaction catalyzed by the viral spike glycoproteins and triggered by the low pH prevailing in the endosomal compartment. In this study the in vitro pH-dependent fusion of SFV with nuclease-filled liposomes has been used to select for a new class of virus mutants that have a pH-conditional defect. The mutants obtained had a threshold for fusion of pH 5.5 as compared with the wild- type threshold of 6.2, when assayed by polykaryon formation, fusion with liposomes, or fusion at the plasma membrane. They were fully capable of infecting cells under standard infection conditions but were more sensitive to lysosomotropic agents that increase the pH in acidic vacuoles of the endocytic pathway. The mutants were, moreover, able to penetrate and infect baby hamster kidney-21 cells at 20 degrees C, indicating that the endosomes have a pH below 5.5. The results confirm the involvement of pH-triggered fusion in SFV entry, emphasize the central role played by acidic endosomal vacuoles in this reaction, shed further light on the mechanism of SFV inhibition by lysosomotropic weak bases, and demonstrate the usefulness of mutant viruses as biological pH probes of the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号