首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The ammonium nitrogen oxidation process (ANOP) is the first and most important step for nitrogen removal in constructed wetlands (CWs). The process was investigated by observing the products generated from the ANOP in on-site aerobic systems with selective inhibition of nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen concentrations. The effects of season, plant type and density on ANOP were also studied to determine the optimal conditions for the ANOP. Nitrite accumulation was found in the aerobic experiments and greater ammonia-oxidizing bacteria than NOB numbers, showing that partial nitrification to nitrite was occurring in the studied CWs. The nitrogen removal rate was positively linearly correlated with the nitrite accumulation rate, and so the more NH3-N removed by ANOP, the greater the resulting nitrogen removal. Season and plant density had a significant effect on the ANOP. However, there were no significant differences between the units planted with common reed and cattail.  相似文献   

2.
A layer effect study was conducted to investigate the transformation of nitrogenous pollutants in two batch subsurface horizontal constructed wetlands. Artificial drainage water containing a low concentration of chemical oxygen demand (CODCr), but high concentration of ammonia and nitrate, was treated in two batch wetland cuboids. The nitrogen removal rates were found to be significantly affected by the characters of the layer as well as the biomass and roots of different plant species (P < 0.05). Correlations between pH, oxidation-reduction potential, and retention time indicated that nitrogen removal rates under study conditions mainly depended on the location of the layer and the plant species in the constructed wetland.  相似文献   

3.
This study investigated three lab-scale hybrid wetland systems with traditional (gravel) and alternative substrates (wood mulch and zeolite) for removing organic, inorganic pollutants and coliforms from a synthetic wastewater, in order to investigate the efficiency of alternative substrates, and monitor the stability of system performance. The hybrid systems were operated under controlled variations of hydraulic load (q, 0.3-0.9 m3/m2 d), influent ammoniacal nitrogen (NH4-N, 22.0-80.0 mg/L), total nitrogen (TN, 24.0-84.0 mg/L) and biodegradable organics concentration (BOD5, 14.5-102.0 mg/L). Overall, mulch and zeolite showed promising prospect as wetland substrates, as both media enhanced the removal of nitrogen and organics. Average NH4-N, TN and BOD5 removal percentages were over 99%, 72% and 97%, respectively, across all three systems, indicating stable removal performances regardless of variable operating conditions. Higher Escherichia coli removal efficiencies (99.9%) were observed across the three systems, probably due to dominancy of aerobic conditions in vertical wetland columns of the hybrid systems.  相似文献   

4.
The performance of a pilot-scale horizontal subsurface flow (HSF) constructed wetland is investigated with emphasis on the effects of wastewater step-feeding. One pilot-scale unit, of dimensions 3 m in length and 0.75 m in width, operated continuously from January 2004 until February 2007. The unit contained cobbles obtained from a river bed and was planted with common reed (Phragmites australis). Synthetic wastewater was introduced to the unit. During the first two years of operation (period A) one inflow point was used at the upstream end of the unit. During the third year of operation (period B), wastewater step-feeding was adopted. Wastewater was introduced to the unit through three inlet points: one at the upstream end of the unit length and the other two at 1/3 and 2/3 of the unit length. Two wastewater step-feeding schemes were examined during the second working period: 33:33:33 and 60:25:15. Three HRTs (6, 8 and 14 days) were applied; wastewater temperatures varied from 6.0 to 25.0 °C. On the whole, the adoption of step-feeding in a HSF CW may be positive if an appropriate scheme is selected. Indeed, the removal of organic matter (BOD5 and COD), nitrogen (TKN and ammonia) and phosphorus (Total Phosphorus and ortho-phosphate) was improved under the step-feeding Scheme 60:25:15, while the other scheme (33:33:33) affected negatively the wetland performance.  相似文献   

5.
Constructed wetlands are being considered a sustainable and promising option whose performance, cost and resources utilization can complement or replace conventional water treatment. The literature reported the fact that an insufficient residence time of pollutants in soils induces an incomplete and unfinished biodegradation process. In this work, engineering solutions are proposed with the objective of significantly increasing the solute retention capacity in the horizontal flow constructed wetland (HFCW). Using several numerical tracers experiments with different operating scenarios, such as the HFCW physical configuration, the flow rate, the boundary conditions, the adsorption layer thickness, practical methods and a new empirical law are suggested in order to substantially increase the adsorption ability in the HFCW, and hence the pollutant removal. Furthermore, it appears that there is no impact of the adsorbent layer thickness on the solute mean residence time with high values of adsorption coefficient (kd). For smaller kd values, the deeper the adsorption layer thickness, the higher the retention time.  相似文献   

6.
Official guidelines for the on-site treatment of domestic sewage have recently been published by the Danish Ministry of Environment as a consequence of new treatment requirements for single houses and dwellings in rural areas. This paper summarises the guidelines for vertical constructed wetland systems (planted filter beds) that will fulfil demands of 95% removal of BOD and 90% nitrification. The system can be extended with chemical precipitation of phosphorus with aluminium polychloride in the sedimentation tank to meet requirements of 90% phosphorus removal. The necessary surface area of the filter bed is 3.2 m2/person equivalent and the effective filter depth is 1.0 m. The filter medium must be filtersand with a d10 between 0.25 and 1.2 mm, a d60 between 1 and 4 mm, and a uniformity coefficient (U = d60/d10) less than 3.5. The sewage is, after sedimentation, pulse-loaded onto the surface of the bed using pumping and a network of distribution pipes. The drainage layer in the bottom of the bed is passively aerated through vertical pipes extending into the atmosphere in order to improve oxygen transfer to the bed medium. Half of the nitrified effluent from the filter is recirculated to the first chamber of the sedimentation tank or to the pumping well in order to enhance denitrification and to stabilise the treatment performance of the system. A phosphorus removal system is installed in the sedimentation tank using a small dosing pump. The mixing of chemicals is obtained by a simple airlift pump, which also circulates water in the sedimentation tank. The vertical flow constructed wetland system is an attractive alternative to the common practice of soil infiltration and provides efficient treatment of sewage for discharge into the aquatic environment.  相似文献   

7.
潜流湿地和表面流湿地的净化效果与植物生长比较   总被引:6,自引:1,他引:6  
分别以砾石和土壤为填料构建成潜流人工湿地和表面流人工湿地,处以较大水力负荷的污水处理。比较了两种湿地对污水的净化效果,结果表明在较大水力负荷条件下两种湿地的净化效果都较差,但潜流湿地对各种污染物的净化能力都优于表面流湿地;土柱法测量了湿地植物的根系生物量,结果显示湿地植物地上部分长势差异不明显,但潜流湿地的根系生物量显著低于表面流湿地的根系生物量(P<0.05)。结合前期实验结果得出湿地净化效果不仅与湿地植物根系生物量有相关关系,还与其他因素有一定的相关关系。  相似文献   

8.
Two bed media were tested (gravel and Filtralite) in shallow horizontal subsurface flow (HSSF) constructed wetlands in order to evaluate the removal of ammonia and nitrate for different types of wastewater (acetate-based and domestic wastewater) and different COD/N ratios. The use of Filtralite allowed both higher mass removal rates (1.1 g NH4–N m−2 d−1 and 3 g NO3–N m−2 d−1) and removal efficiencies (>62% for ammonia, 90–100% for nitrate), in less than 2 weeks, when compared to the ones observed with gravel. The COD/N ratio seems to have no significant influence on nitrate removal and the removal of both ammonia and nitrate seems to have involved not only the conventional pathways of nitrification–denitrification. The nitrogen loading rate of both ammonia (0.8–2.4 g NH4–N m−2 d−1) and nitrate (0.6–3.2 g NO3–N m−2 d−1) seem to have influenced the respective removal rates.  相似文献   

9.
This study aimed to evaluate the contaminant removal efficiency of shallow horizontal subsurface flow treatment wetlands (SSF TWs) as a function of (1) primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and (2) operation strategy (alternation of saturated/unsaturated phases vs. permanently saturated). An experimental plant was constructed, operated and surveyed for the main water quality parameters over a period of 2.5 years. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturated/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line wetlands had a surface area of 2.80 m2, a water depth of 25 cm and a granular medium D60 = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 28.5 mm/d and about 4.7 g BOD/m2 d, respectively. Effluent average redox potential was lower for the anaerobic line (−45 ± 78 mV) than for the other two lines (3 ± 92.7 and −5 ± 71 mV for control and batch, respectively). Overall, chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and ammonium mass removal efficiencies were slightly greater for the batch line (88%, 96% and 87%, respectively) than for the control line (83%, 94% and 80%) and the anaerobic line (80%, 87% and 73%). During cold seasons, COD and ammonium removal in the batch line was around 30% and 50% higher than in the control line, respectively. The results of this study indicate that the implementation of a HUSB reactor as primary treatment did not enhance the treatment capacity of the system (in comparison with a conventional settler). The efficiency of treatment wetland systems with horizontal subsurface flow can be improved using a batch operation strategy.  相似文献   

10.
The influence of light weight aggregates made of fly ash from sewage sludge thermal treatment (FASSTT LWA) on the nitrogen removal efficiency from artificial wastewater in constructed wetlands (CW) with vertical flow reed bed was investigated. Thirty lysimeters with six different double-layer bed constructions (upper layer of FASSTT LWA with thicknesses of: 0 cm, 12 cm, 25 cm, 50 cm, and 100 cm of the total depth of the lysimeter, above a lower gravel layer), either with or without reed plants were operated with wastewater hydraulic loading rate of 4.67 mm/d. During a six-month experiment, high efficiency of ammonia removal was observed. The influence of FASSTT LWA as a bed material and the presence of reed on CW treatment efficiency was determined. The highest total nitrogen removal efficiency, 59.5%, was obtained in the CW with double-layer lysimeters consisting of 25% FASSTT LWA (upper layer), and 75% gravel (lower layer), and planted with reed.  相似文献   

11.
This paper describes the development and operation of an Environmental Decision Support System (EDSS) to improve the operation and maintenance of horizontal subsurface-flow constructed wetlands (EDSS-maintenance). Constructed wetlands (CWs) allow wastewater treatment in a sustainable manner since they involve low energy consumption, low construction and functioning costs and low environmental impact. However, operation and maintenance activities are essential to guarantee reliability in CWs performance. The definition of operation and maintenance protocols depends on several quantitative and qualitative aspects such as wastewater treatment plant configuration, CW design, influent characteristics, sensitivity of the receiving media, etc. Bearing this in mind and considering the limited technical knowledge about CWs, the need for a new tool to support CW performance is clear. In this sense, EDSSs offer a new approach because they can tackle problems of complex and uncertain systems. The EDSS-maintenance provides operation and maintenance manuals specifically defined for every CW. To achieve it, the required knowledge was implemented within a rule-based system, which forms the backbone of the EDSS. Several features presented in this paper demonstrate how the EDSS-maintenance provides a proper platform to support the necessary collaborative work in the ecological engineering problem of horizontal subsurface flow CWs operation and maintenance.  相似文献   

12.
Lab scale constructed wetlands were used to evaluate organic load removal efficiency. Bioreactors were fed with synthetic wastewater (SW) with varying concentrations of nitrogen and potassium. Reactors were planted with species Phragmites australis. Fed theoretic COD was adjusted to 240.0 mg-O2 L−1, nitrogen levels were 10 and 40 mg-N L−1 (ammonium sulfate), potassium levels were 5 and 31 mg-K L−1 (potassium monobasic phosphate). The higher biomass yield, for 0.5 and 0.775 N:K ratios, was related with higher organic load removal. The ratio N:K showed significant differences for organic load abatement, when 1:0.5 and 1:0.775 N:K ratios were applied, 96.8% efficiency was obtained, whereas N:K ratio of 1:0.125 had efficiency of 92.1% and N:K ratio of 1:3.1 showed an efficiency of 90.5%. For planted bioreactor EH decreased in 162.7 mV from sample port to 5 cm down to 35 cm depth, while for the bioreactor without plant showed an EH decrement of only 17.7 mV.  相似文献   

13.
In the present study, a full scale horizontal subsurface flow constructed wetland was designed, constructed and operated to treat domestic wastewater of K?z?lcaören village in Samsun city of Turkey. The total surface area of HSFCW was divided into equal parts. The effects of Juncus acutus L. and Cortaderia selloana (Schult.Schult.f.)Asch.&;Graebn. on pollutants removal in HSFCWs were evaluated with the meteorological factors. The average removal efficiencies of J. acutus and C. selloana were determined as 60.3–57.7% for BOD; 24.2–38.9% for TN; 31.4–49.8% for OM; 35.4–43.3% for TP; 18.9–27.1% for orthophosphate; 24.4–28.7% for NH4-N; 29.5–37.2% for TSS; and 35.3–44.3% for TSM. Two-way ANOVA was applied to determine any difference for the removal of all parameters between the plant types and months on the mean values of contaminant removal. A correlation matrix of all parameters was determined. Subsurface flow constructed wetland was found quite efficient for the treatment of domestic wastewater in rural settlements. HSFCW is also more economical to install and maintain than a conventional wastewater treatment system while enhancing ecosystem services.  相似文献   

14.
In comparison with other European countries, constructed wetlands may still be considered a recent technology in Spain. A survey of the systems treating urban wastewater in this country revealed that over 80% of subsurface-flow constructed wetlands have been built over the last 5 years, horizontal systems (HF-CW) alone or in combination with other unit processes such as ponds being the most widespread type. Organic loads ranged from 0.8 to 23, from 22.8 to 29.8 and from 3.6 to 16.7 g BOD m−2 day−1 for HF-CW (alone), vertical systems (VF-CW) and combined systems (HF-CW with other unit processes), respectively. The performance of such systems in terms of BOD5 removal generally ranged from 80 to 95% in all cases (HF-CW, VF-CW and combined systems), whereas COD removal was slightly lower, ranging from 50 to 95%, 80 to 95% and 50 to 90% for the HF-CW, VF-CW and combined systems, respectively. Furthermore, the TSS removal rate ranged from 70 to 95% for combined systems and from 85 to 95% for HF-CW (alone). The systems were not very efficient in terms of nutrient removal (nitrogen and phosphorus), with total average removal efficiencies around 40–50%. In general terms, the analysis of constructed wetlands in Spain shows that although they operate with higher loads than in other European systems, their performance in terms of organic matter and nutrient removal is in the range of that described in previous studies.  相似文献   

15.
The aim of this paper is to examine if artificial neural networks (ANNs) can predict nitrogen removal in horizontal subsurface flow (HSF) constructed wetlands (CWs). ANN development was based on experimental data from five pilot-scale CW units. The proper selection of the components entering the ANN was achieved using principal component analysis (PCA), which identified the main factors affecting TN removal, i.e., porous media porosity, wastewater temperature and hydraulic residence time. Two neural networks were examined: the first included only the three factors selected from the PCA, and the second included in addition meteorological parameters (i.e., barometric pressure, rainfall, wind speed, solar radiation and humidity). The first model could predict TN removal rather satisfactorily (R(2)=0.53), and the second resulted in even better predictions (R(2)=0.69). From the application of the ANNs, a design equation was derived for TN removal prediction, resulting in predictions comparable to those of the ANNs (R(2)=0.47). For the validation of the results of the ANNs and of the design equation, available data from the literature were used and showed a rather satisfactory performance.  相似文献   

16.
The use of surface flow (SFCWs) and subsurface flow constructed wetlands (SFCWs) for the treatment of combined sewer overflows was assessed at pilot scale. Synthetic wastewater was applied in three batches with decreasing concentrations to mimic concentration profiles that are obtained in the field during overflow events. Three simulated combined sewer overflows were applied on each wetland. Composite water samples (60 in total) were taken for a period of 8 days to study the removal of total nitrogen (Ntot), NH4–N, NO3–N, total COD (CODtot) and total phosphorus. Redox potential, which was monitored at various locations along the wetlands, was more negative in the SSFCWs. In general, removal occurred faster in the SSFCWs and the final concentrations were lower. The removal of Ntot was only 36.6 ± 3.3% in the SFCWs due to nitrification-limiting conditions. The conditions in the SSFCWs, in contrast, seemed to promote Ntot removal (removal efficiency 96.7 ± 1.9%). The removal of P was hampered in both wetland types by reducing conditions. P that was initially removed was released again from the substrates later on. First-order removal rate constants were derived for the removal of both CODtot (SSFCWs: 1.1 ± 0.3 m d?1; SFCWs: 0.17 ± 0.06 m d?1) and Ntot (SSFCWs: 0.4 ± 0.1 m d?1; SFCWs: 1.7 ± 0.5 m d?1).  相似文献   

17.
The objective of this study is to examine the treatment performance of vertical flow intermittent feeding constructed wetland (VFCW) in removal of organic pollution, nutrients and color in azo-dye containing wastewater. The systems consisted of PVC reactors, some filling materials such as gravel, sand and zeolite and wetland plants including Typha angustifolia and Canna indica. The average treatment efficiency of the systems for COD, color, sulphate, NH4-N, and PO4-P were in the range of 57–63%, 94–99%, 44–48%, 39–44%, and 84–88%, respectively among the VFCW reactors. It is concluded that VFCW reactor system can effectively be used in the treatment of dye-rich wastewater, especially for the removal of color and in the reduction of COD. Biofilm formation and cleavage of azo bonds could be observed by SEM and FTIR results, respectively. Almost similar NH4-N and PO4-P removal were obtained in all reactors by using same amount of zeolite media.  相似文献   

18.
Abstract

This study evaluates the bio-treatability performance and kinetic models of full-scale horizontal subsurface flow constructed wetland used for the tertiary treatment of composite industrial effluent characterized by high-salt content ranging from 5830 to 10,400 µS/cm and biochemical oxygen demand (BOD5): chemical oxygen demand (COD) ratio below 0.2. The wetland vegetated with Phragmites australis was operated in a semi-arid climate under an average hydraulic loading rate of 63?mm/d. The results of a 4-year operation calculated based on the concentration of pollutants showed that the average removal efficiency of COD, BOD5, and total suspended solids (TSS) were 17.5, 5.1, and 11.2%, respectively. The system reduced up to 6.5?±?0.7% of electrical conductivity presenting poor phyto-desalination potential without considering the contribution of evapotranspiration in water balance in contrast to satisfying performance for heavy metals reduction. The comparison of the kinetics of organic matter removal obtained by the first-order and Monod models paired with continuous stirred-tank reactor and plug flow regime showed that Monod-plug flow model provided the best fit with the constants of 2.01?g COD/m2·d and 0.3014?g BOD5/m2·d with the best correlation coefficient of 0.610 and 0.968 between the predicted and measured concentrations, respectively. The low kinetic rates indicate that the process is capable of effluent polishing instead of purification due to the presence of organic compounds recalcitrant to biodegradation and a high level of salinity.  相似文献   

19.
This study aims to estimate the three greenhouse gas (GHG) emissions (i.e. CO2, CH4, N2O) from a vertical subsurface flow constructed wetland (VSSF CW, 1000 m2) and a cluster of conventional wastewater treatment plants (WWTPs) in the city of Changzhou, China. The two estimated emissions are set up for comparison. The results show that the WWTP system emits 7.3 kg CO2-eq to remove 1 kg BOD in the studied life cycle, while the VSSF system only emits 3.18 kg CO2-eq, which is only half of the amount given off by the WWTP system. Especially at the treatment stage, the WWTP system's GHG emissions are almost 7 times higher than the VSSF system's. N2O emissions in both systems are only a minor fraction of the total emissions. Therefore, this study has concluded that the VSSF system is an effective option for GHG emissions mitigation in the wastewater sector. The study further suggests that developing countries like China should extensively build up VSSF systems for decentralized wastewater treatment, which could also potentially reduce GHG emissions by 8-17 million ton CO2-eq per year compared with the centralized scenario.  相似文献   

20.
The life-cycle greenhouse gaseous emissions and primary exergy resources consumption associated with a horizontal subsurface flow constructed wetland (HSSF) were investigated. The subject of study was a wetland for municipal wastewater treatment with a 700-person-equivalent capacity. The effects of two types of emergent aquatic macrophytes (Phragmites australis and Schoenoplectus californicus) and seasonality on greenhouse gas (GHG) gas emissions, the environmental remediation cost (ERC) and the specific environmental remediation cost (SERC) were assessed. The results indicate that GHG emissions per capita (12–22 kgCO2eq/p.e/yr) and primary exergy resources consumed (24–27 MJ/m3) for the HSSF are lower than those of a conventional wastewater treatment plant (67.9 kgCO2eq/p.e/yr and 96 MJ/m3). The SERC varied between 176 and 216 MJ/kg biological oxygen demand (BOD5) removal, which should be further reduced by 20% for an improved BOD5 removal efficiency above 90%. The low organic matter removal efficiency is associated with a high organic load and low bacterial development. Seasonality has a marked effect on the organic removal efficiency and the SERC, but the macrophyte species does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号