首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon hydrolysis of membrane glycosyl-phosphatidylinositol (gly-PtdIns), an inositol phosphoglycan (IPG) is generated, responsible for multiple biological activities and recently proposed as mediator of the action of a variety of hormones and growth factors. The present study shows that IPG is able to significantly stimulate platelet glycolysis, which represents the major energy producing pathway in this cell system. The activation of glycolytic flux induced by IPG appears to be specific and very rapid even though the molecular mechanism involved remains to be elucidated.  相似文献   

2.
At concentrations of 25 ng/ml in serum-free medium, somatomedin C (SM-C) and insulin stimulated 3H-thymidine incorporation in adult human fibroblasts 4- and 1.5-fold, respectively. The presence of 0.25% human hypopituitary serum (HHS), which by itself had little effect, enhanced the mitogenicity of both SM-C and insulin. Furthermore, 10(-7)M dexamethasone dramatically potentiated SM-C stimulation (70-fold) and insulin stimulation (28-fold) of 3H-thymidine incorporation. With dexamethasone and 0.25% HHS, significant stimulation of DNA synthesis was seen at 2.5 ng/ml for both SM-C and insulin. The effects of SM-C and insulin on 3H-thymidine incorporation were additive. These 3H-thymidine incorporation results were clearly supported by cell replication studies. On the other hand, SM-C and insulin had equivalent, nonadditive effects on RNA and protein synthesis and protein degradation. Half-maximal effects were seen for both peptides on all three metabolic processes at 2-5 ng/ml. In contrast to their synergism with SM-C in the stimulation of DNA synthesis and cell replication, HHS and dexamethasone did not enhance SM-C stimulation of RNA or protein synthesis or protein degradation. These data indicate that SM-C and insulin stimulate DNA, RNA, and protein synthesis, protein degradation, and cell replication in adult human fibroblasts at nanomolar concentrations, suggesting that each peptide is capable of acting through its own receptor. Both SM-C and insulin are also capable of synergism with low concentrations of serum and dexamethasone in the stimulation of DNA synthesis and cell replication. It is proposed that SM-C and insulin both participate in the regulation of cell growth and metabolism in vivo.  相似文献   

3.
Previously we reported that treating human fibroblasts in cell culture with high-voltage, pulsed galvanic stimulation (HVPGS) can significantly increase cellular protein and DNA synthesis (Bourguignon and Bourguignon: FASEB J., 1:398-402, 1987). In this study we have identified two of the early cellular events which occur following exposure to HVPGS: 1) an increase in Ca2+ uptake from the external medium and 2) an increase in the number of insulin receptors on the fibroblast cell surface. The increase in Ca2+ uptake begins within the first minute of electric stimulation while increased insulin binding is not detected until the second minute of stimulation. The HVPGS-induced increase in insulin binding can be inhibited by bepridil, a specific Ca2+ channel blocker, suggesting that the Ca2+ influx is required for the exposure of additional insulin receptors on the cell surface. Furthermore, we have determined that the addition of insulin to electrically stimulated cultures results in 1) an immediate, second increase in Ca2+ uptake and 2) significant increases in both protein and DNA synthesis compared to cells which were not stimulated. All three of these insulin-dependent effects are also inhibited by bepridil. Based on these results, we propose that HVPGS initially triggers the opening of voltage-sensitive calcium channels in the fibroblast plasma membrane. The increased level of intracellular Ca2+ then induces the exposure of additional insulin receptors, the fibroblasts will significantly increase both protein and DNA synthesis.  相似文献   

4.
Glucocorticoids will enhance the growth of cultured human skin fibroblasts in serum-containing medium. In serum-free cultures hydrocortisone (5 X 10(-6) M) will enhance insulin stimulation of sugar transport and DNA synthesis (as measured by thymidine incorporation into trichloroacetic acid-precipitable material). The optimal concentration for the glucocorticoid effect on DNA synthesis was 5 X 10(-8) M for dexamethasone and 5 X 10(-7) M for hydrocortisone. In dexamethasone-treated cells, concentrations of insulin as low as 250 microU/ml (10 ng/ml) were effective in stimulating DNA synthesis. Further, hydrocortisone and dexamethasone (both at 5 X 10(-6) M) exhibited potentiating effects on insulin-stimulated sugar transport. These effects appeared to be mediated via inhibitory actions on the hexose transport system with the preservation of a functional insulin-receptor interaction resulting in insulin stimulation of deoxy-D-glucose transport at physiological insulin concentrations, 250 microU/ml (10 ng/ml). Hydrocortisone also enhanced specific [125I]insulin binding in these cells. The data indicate that the mechanism(s) of glucocorticoid enhancement of two actions of insulin may be different.  相似文献   

5.
The effect of plant lectins on amino acid uptake and DNA synthesis in cultured human skin fibroblasts stimulated by various peptide mitogens was studied. Wheat germ agglutinin (WGA), at a concentration of 5 micrograms/ml, which by itself had little effect on 3H-aminoisobutyric acid (AIB) uptake, markedly inhibited stimulation of 3H-AIB uptake by somatomedin-C, insulin, epidermal growth factor (EGF) and platelet-derived growth factor. This inhibition could not be overcome by increasing the concentration of peptide added. Neither WGA nor concanavalin A (Con A) significantly affected basal 3H-thymidine incorporation. However both lectins, at concentrations of 5-20 micrograms/ml, decreased EGF- and insulin-stimulated DNA synthesis while succinyl Con A, a divalent lectin derivative, did not. The inhibitory effects of lectins on mitogenic stimulation were reversed by alpha-methyl mannose (Con A) or N-acetylglucosamine (WGA), and were not due to a reduction in the binding of growth factors to their receptors. It is concluded that certain lectins noncompetitively inhibit the response of human fibroblasts to multiple peptide mitogens at the post-receptor level, possibly by interfering with lateral mobility and aggregation of mitogen-receptor complexes.  相似文献   

6.
In porcine thyrocytes, TSH alone does not induce cell growth. Recently, it has been demonstrated that acute stimulation by TSH of porcine thyrocytes leads to release an inositolphosphate glycan (IPG) described as a putative second messenger for various growth factors in different cell types. IPG isolated from porcine thyrocytes induces proliferation of fibroblasts EGFR T17 and porcine thyrocytes. In porcine thyrocytes we have confirmed that cell growth requires the presence of both TSH and insulin. This effect is reproduced by 8-bromo cyclic AMP suggesting a mediation by intracellular cyclic AMP. Cooperative effects between 8-bromo cyclic AMP and IPG have also been evidenced and are in favour of a crosstalk between distinct signalling pathways.  相似文献   

7.
Cell-cycle defect of DNA repair in progeria skin fibroblasts   总被引:1,自引:0,他引:1  
We examined the temporal regulation of DNA repair during synchronous cell proliferation in normal and progeroid human fibroblasts. Ultraviolet light-induced (254 nm, 20 J/m2) unscheduled DNA synthesis was measured at 4-h intervals after serum stimulation, for up to 32 h. Normal cells regulated DNA repair in a defined temporal sequence, showing a peak in the induction of DNA repair just before DNA synthesis. Progeroid skin fibroblasts failed to show an increase in nucleotide excision repair before scheduled DNA synthesis, but the background level of DNA repair was not significantly different from that in controls. Regulation of repair in progeroid human fibroblasts appeared similar, but not identical to that previously reported by Gupta and Sirover (1984b) for xeroderma pigmentosum complementation group C. Our results suggest that patients with Hutchinson-Gilford progeria may have a defect in DNA repair; the results offer nominal evidence that the average level of UV-induced DNA is decreased, and that individuals with this disease lack both the normal enhancement of DNA repair before scheduled DNA synthesis and the temporal control of DNA repair.  相似文献   

8.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

9.
Previous work from this laboratory (Rovera and Baserga, 1971) has shown that, when density-inhibited WI-38 human diploid fibroblasts are stimulated to proliferate by a change of medium, the synthesis of nuclear acidic proteins increases within 30 minutes after stimulation; several hours before DNA synthesis begins to increase. Similar results have now been obtained with density-inhibited 3T6 mouse fibroblasts, also stimulated by a change of medium. Gel electrophoretic analysis of nuclear acidic proteins in both WI-38 human diploid fibroblasts and 3T6 mouse fibroblasts stimulated to proliferate indicates that the increased synthesis of nuclear acidic proteins is limited to certain classes of proteins while other classes are totally unaffected. The increase in nuclear acidic proteins synthesis is inhibited when WI-38 cells or 3T6 cells are stimulated in the presence of 5-azacytidine (10 μg/ml), a treatment which also inhibits the subsequent stimulation of DNA synthesis. These results, confirming and extending similar findings previously reported in other models of stimulated DNA synthesis, lend further support to the hypothesis that nuclear acidic proteins may play a critical role in the control of DNA synthesis and cell division in mammalian cells.  相似文献   

10.
The effects of four monoclonal antibodies to the alpha subunit of the human insulin receptor were studied in transfected mouse 3T3 fibroblasts expressing human insulin receptors (3T3/HIR). Three antibodies, MA-5, MA-20, and MA-51, mimicked insulin stimulation of the uptake of both 2-deoxy-D-glucose and alpha-aminoisobutyrio acid, and S6 kinase activity. Antibody MA-5 also mimicked insulin stimulation of [3H]thymidine incorporation and cell growth. Although these antibodies mimicked insulin stimulation of biological effects, they failed to significantly activate insulin receptor tyrosine kinase activity. These studies suggest, therefore, that the insulin receptor can signal a variety of cellular functions without stimulation of receptor kinase activity.  相似文献   

11.
The effect of hepatocyte growth factor/scatter factor (HGF/SF) on the proliferation of human skin fibroblasts was examined. At concentrations above 1.0 ng/ml, both native and recombinant human HGF/SF stimulated the DNA synthesis determined by [3H]thymidine incorporation, which was completely inhibited by an anti-human HGF/SF monoclonal antibody. The maximal DNA synthesis in the treated cells was nearly twice that in untreated cells. HGF/SF also caused an increase in the labelling index, DNA content and cell number. The effect of HGF/SF was more than additive to the maximal effect of insulin and epidermal growth factor, other mitogens for the fibroblasts. These results indicate that human skin fibroblasts are sensitive to the mitogenic action of HGF/SF.  相似文献   

12.
Rapidly growing Swiss 3T3 fibroblasts possess a bumetanide-sensitive K+ transport system that is dependent on both Na+ and Cl- ions; a smaller bumetanide-insensitive component of K+ transport is also present. In cells brought to the quiescent state by 8-11 days of incubation without a medium change, the bumetanide-sensitive rate of transport was reduced by 63%; the bumetanide-insensitive rate did not change. Removal of dialyzed fetal calf serum from the uptake medium resulted in a substantial reduction in bumetanide-sensitive uptake in both rapidly growing cells (33% reduction) and quiescent cells (68% reduction) but had no effect on bumetanide-insensitive uptake. Insulin was almost as effective as dialyzed fetal calf serum in stimulating bumetanide-sensitive uptake; insulin was maximally stimulatory at 2.5 micrograms/ml. The combination of insulin, epidermal growth factor, and arginine-vasopressin was maximally effective in stimulating both bumetanide-sensitive K+ uptake and 3H-thymidine incorporation in quiescent cells; bumetanide, however, did not interfere with the hormonal stimulation of DNA synthesis. Thus, the bumetanide-sensitive K+ transport system is not necessary for such stimulation to occur. Furthermore, concentrations of hormones which stimulated significant levels of DNA synthesis produced no elevation in the intracellular concentration of K+. We conclude that the bumetanide-sensitive pathway of K+ transport is modulated by serum and by mitogenic hormones, but does not play a role in the stimulation of DNA synthesis by these factors.  相似文献   

13.
The roles of ornithine decarboxylase (ODC, EC 4.1.1.17) and polyamines in cellular aging were investigated by examining serum-induced changes of these parameters in quiescent IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL) and in human progeria fibroblasts. Serum stimulation caused increases of ODC and DNA synthesis in IMR-90 human diploid fibroblasts, with maximal values occurring, respectively, 10 hr and 22 hr after serum stimulation. Both serum-induced ODC activity and DNA synthesis in IMR-90 cells were found to be inversely related to their PDL. Maximal ODC activity and DNA synthesis in young cells (PDL = approximately 18-22) were, respectively, five-fold and six-fold greater than that in old cells (PDL = approximately 50-55), which in turn were comparable or slightly higher than that in progeria fibroblasts. Polyamine contents (putrescine, spermidine, and spermine) in quiescent IMR-90 cells did not show significant PDL-dependency. The putrescine and spermine contents in quiescent progeria cells were comparable to those in quiescent IMR-90 cells. The spermidine content in quiescent progeria cells, however, was extremely low, less than half of that in quiescent IMR-90 cells. Serum stimulation caused a marked increase in putrescine content in young cells but not in old cells or in progeria cells. The spermidine and the spermine content in IMR-90 cells, either young or old, and in progeria cells did not change significantly after serum stimulation. Our study indicated that aging of IMR-90 human diploid fibroblasts was accompanied by specific changes of polyamine metabolism, namely, the serum-induced ODC activity and putrescine accumulation. These changes were also observed in progeria fibroblasts derived from patients with Hutchinson-Gilford syndrome.  相似文献   

14.
Numatrin is a tightly bound nuclear matrix protein (40 kD/pI-5) whose synthesis is markedly and promptly increased in association with cellular commitment for mitogenesis in B lymphocytes. (Feuerstein, N., and J.J. Mond. 1987. J. Biol. Chem. 262:11389-11397). To study whether this event is exclusively associated with proliferation of B lymphocytes, we examined the synthesis of numatrin in T lymphocytes (murine and human) activated by lectins or by anti-T cell antigen receptor monoclonal antibody and in Swiss 3T3 fibroblasts stimulated by growth factors. We showed a close correlation between induction of DNA synthesis and induction of numatrin synthesis in T lymphocytes stimulated by concanavalin A, anti-T cell antigen receptor monoclonal antibody, and IL-2 in murine T cells. Similar results were observed in Swiss 3T3 fibroblasts, thus only combinations of growth factors (insulin/EGF or insulin/B subunit of cholera toxin) or serum, which induced a significant increase in DNA synthesis, were also associated with a significant increase in synthesis of numatrin. Similar to B cells, the increase in numatrin synthesis in fibroblasts was found to occur at early G1 phase. The calcium ionophores, A23187 and ionomycin, previously shown to induce an increase in c-myc and c-fos mRNA levels in fibroblasts, induced a marked increase in the synthesis of a nuclear protein at 80 kD/pI-5 but failed to induce an increase in the synthesis of numatrin indicating that an increase in intracellular Ca++ level is not sufficient for induction of the synthesis of numatrin. This further indicates that the increase in synthesis of numatrin may be more closely correlated with cellular commitment for mitogenesis as compared with other biochemical parameters. Using a polyclonal numatrin antibody we demonstrated that mitogen stimulation is also associated with a marked increase in numatrin abundance, which reached a peak at the onset of S phase and declined at the end of S phase. Evidence is presented to show that numatrin synthesis and abundance is elevated in various lymphoma cell lines. Using indirect immunofluorescence assays we showed that numatrin is abundant in other malignant cells: KB, epidermoid carcinoma, and Hep2 human hepatoma. Immunofluorescence studies further showed that mitogen stimulation of B lymphocytes induced a marked accumulation of numatrin in the nucleoli. This observation is in accord with the recent finding of identity of numatrin with the nucleolar protein B23 (Feuerstein et al. 1988. J. Biol. Chem. 263:10608-10612).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The mitogen requirement and proliferative response of Swiss 3T3 cells in serum-free, chemically defined culture medium were compared with those of early-passage human diploid fibroblasts. The effects of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin, transferrin, and dexamethasone on cell-cycle parameters were measured using 5'-bromo-deoxyuridine-Hoechst flow cytometry. Swiss 3T3 cells differ from human fibroblasts in several ways: (1) Swiss 3T3 cells showed a much higher dependence on PDGF than human fibroblasts; the growth of the latter, but not of the former, could be stimulated by the combination of EGF, insulin, and dexamethasone to the full extent of that when PDGF was present; (2) in the absence of PDGF, insulin was an absolute requirement for Swiss 3T3 cells to initiate DNA synthesis, while a substantial proportion of human fibroblasts could enter DNA synthesis without exogenous insulin or IGF-I; and (3) in the absence of PDGF, increasing insulin concentration increased the cycling fraction of Swiss 3T3 cells without an appreciable effect on the rate of cell exit from G0/G1, while under similar culture conditions, insulin showed its major effect on regulation of the G1 exit rate of human fibroblasts, without much effect on the cycling fraction. In addition, the proliferative response of high-density versus low-density, arrested Swiss 3T3 cells showed that the interaction of mitogens varied with cell density. At high cell density, the PDGF requirement was consistent with the "competence/progression" cell-cycle model. This growth response was not seen, however, when cells were plated at low density.  相似文献   

16.
A phosphorothioate-oligonucleotide-based antisense strategy for depleting MAP kinase was developed. The 17mer antisense probe, EAS 1, caused a potent and concentration-dependent decrease in the steady state expression of p42 and p44 MAP kinase in 3T3 L1 fibroblasts and adipocytes with submicromolar concentrations effective. Antisense EAS 1 elicited a dose-dependent inhibition of insulin- and serum-stimulated DNA synthesis. Elimination of p42 MAP kinase by > 95% and p44 MAP kinase to levels undetected blocked the ability of serum in 3T3 L1 fibroblasts and insulin in 3T3 L1 adipocytes to stimulate DNA synthesis by 87-95%. The differentiation of 3T3 L1 fibroblasts into adipocytes was prevented by 1 microM antisense EAS 1. The corresponding sense, scrambled or sense plus antisense EAS 1 phosphorothioate oligonucleotides did not deplete the p42 or p44 MAP kinase from either cell type, did not inhibit stimulation of DNA synthesis and did not interfere with differentiation. Two kinases on different MAP kinase activation pathways were not depleted by antisense EAS 1 whereas the ability of insulin to activate p90 S6 kinase was > 90% eliminated in 3T3 L1 adipocytes by 4.5 microM antisense EAS 1. In conclusion these results show that MAP kinase is required for insulin and serum stimulation of DNA synthesis, for insulin stimulation of p90 S6 kinase activity and for differentiation of 3T3 L1 cells. Moreover, the development of the antisense probe EAS 1 against a target sequence of p42 MAP kinase that is conserved in p44 MAP kinase and across a range of species provides a molecular tool of general applicability for further dissecting the precise targets and roles of MAP kinase.  相似文献   

17.
With the aid of autoradiography, the effect of insulin on entering S- from G1-period of the mitotic cycle and on the rate of DNA synthesis of the mouse fibroblasts (L), was studied,--in the cells incubated for 24 hr in serum-free medium. In these conditions the cells were temporarily blocked in G1-period. Insulin (100 mcU/ml) increased by 1.5-fold the amount of cells in S-period as well as caused a marked stimulation of DNA synthesis.  相似文献   

18.
Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H(2)O(2))-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H(2)O(2) treatment. H(2)O(2) induces 8-oxo-dG formation in both RTS and normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed.  相似文献   

19.
Tyrosine phosphorylation of the insulin receptor is the initial event following receptor binding to insulin, and it induces further tyrosine phosphorylation of various intracellular molecules. This signaling is countered by protein tyrosine phosphatases (PTPases), which reportedly are associated with insulin resistance that can be reduced by regulation of PTPases. Protein tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus. Here, we show that PTP1B and LAR are expressed in human fibroblasts, and we examine the regulation of PTPase activity in fibroblasts from patients with an insulin receptor gene mutation as an in vitro model of insulin resistance. Total PTPase activity was significantly lower in the cytosolic and membrane fractions of fibroblasts with mutations compared with controls (p<0.05). Insulin stimulation of fibroblasts with mutations resulted in a significantly smaller increase in PTP1B activity compared with stimulation of wild-type fibroblasts (p<0.05). This indicates that insulin receptor gene mutations blunt increases in PTPase activity in response to insulin, possibly via a negative feedback mechanism. Our data suggest that the PTPase activity in patients with insulin receptor gene mutation and severe insulin resistance may differ from that in ordinary type 2 diabetes.  相似文献   

20.
We have used epidermal growth factor (EGF) to investigate the relationship between eukaryotic topoisomerases and DNA synthesis. We found that EGF stimulates topoisomerase activity in human fibroblasts and Swiss/3T3 mouse fibroblasts. The first increase is seen in the cytoplasm, followed by increased activity in the nucleus. The nuclear increases correspond to increases in DNA synthesis. A type II topoisomerase is stimulated as indicated by the ATP dependence of the relaxing reaction and by the formation of catenanes. We have also found that the topoisomerase activity in the cytoplasm is sedimentable indicating that it is either membrane-associated or in a supramolecular complex. The stimulation of topoisomerase activity by EGF may represent a key step in the process by which EGF induces DNA synthesis and cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号