首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A content-balancing accuracy index, called Q(9), has been proposed to evaluate algorithms of protein secondary structure prediction. Here the content-balancing means that the evaluation is independent of the contents of helix, strand and coil in the protein being predicted. It is shown that Q(9) is much superior to the widely used index Q(3). Therefore, algorithms are more objectively evaluated by Q(9) than Q(3). Based on 396 non-homologous proteins, five algorithms of secondary structure prediction were evaluated and compared by the new index Q(9). Of the five algorithms, PHD turned out to be the unique algorithm with an average Q(9) better than 60%. Based on the new index, it is shown that the performance of the consensus method based on a jury-decision from several algorithms is even worse than that of the best individual method. Rather than Q(3), we believe that Q(9) should be used to evaluate algorithms of protein secondary structure prediction in future studies in order to improve prediction quality.  相似文献   

2.
MOTIVATION: At the core of most protein gene-finding algorithms are the coding measures used to make a decision on coding/non-coding. Of the protein coding measures, the Fourier measure is one of the most important. However, due to the limited length of the windows usually used, the accuracy of the measure is not satisfactory. This paper is devoted to improving the accuracy by lengthening the sequence to amplify the periodicity of 3 in the coding regions. RESULTS: A new algorithm is presented called the lengthen-shuffle Fourier transform algorithm. For the same window length, the percentage accuracy of the new algorithm is 6-7% higher than that of the ordinary Fourier transform algorithm. The resulting percentage accuracy (average of specificity and sensitivity) of the new measure is 84.9% for the window length 162 bp. AVAILABILITY: The program is available on request fromC.- T. Zhang. Contact: ctzhang@tju.edu.cn   相似文献   

3.
张振慧  王勇献  王正华 《激光生物学报》2007,16(2):249-252,F0003
细胞凋亡蛋白对生物体的发育、维持内环境稳定及人们理解细胞凋亡机制非常重要。文中提出了一种新的蛋白质序列特征提取方法—三肽离散源方法。计算了蛋白质序列中紧邻三联体的出现个数,利用离散增量极小化对凋亡蛋白进行定位预测;同时推广了张春霆等提出的内容平衡精度指数,使其能评估任意类的分类问题。实验结果表明:在凋亡蛋白定位预测研究中,三肽离散源方法在提高总体预测精度的同时,能够较好的解决样本不均衡问题;而内容平衡精度指数能比传统的总体预测精度更准确的评估预测算法的预测能力,有效的反映预测算法对样本不均衡问题的相容能力。  相似文献   

4.
Zhang CT  Wang J 《Nucleic acids research》2000,28(14):2804-2814
The Z curve is a three-dimensional space curve constituting the unique representation of a given DNA sequence in the sense that each can be uniquely reconstructed from the other. Based on the Z curve, a new protein coding gene-finding algorithm specific for the yeast genome at better than 95% accuracy has been proposed. Six cross-validation tests were performed to confirm the above accuracy. Using the new algorithm, the number of protein coding genes in the yeast genome is re-estimated. The estimate is based on the assumption that the unknown genes have similar statistical properties to the known genes. It is found that the number of protein coding genes in the 16 yeast chromosomes is ≤5645, significantly smaller than the 5800–6000 which is widely accepted, and much larger than the 4800 estimated by another group recently. The mitochondrial genes were not included into the above estimate. A codingness index called the YZ score (YZ Œ [0,1]) is proposed to recognize protein coding genes in the yeast genome. Among the ORFs annotated in the MIPS (Munich Information Centre for Protein Sequences) database, those recognized as non-coding by the present algorithm are listed in this paper in detail. The criterion for a coding or non-coding ORF is simply decided by YZ > 0.5 or YZ < 0.5, respectively. The YZ scores for all the ORFs annotated in the MIPS database have been calculated and are available on request by sending email to the corresponding author.  相似文献   

5.
Gene prediction relies on the identification of characteristic features of coding sequences that distinguish them from non-coding DNA. The recent large-scale sequencing of entire genomes from higher eukaryotes, in conjunction with currently used gene prediction algorithms, has provided an abundance of putative genes that can now be analysed for their compositional properties. Strong, systematic differences still exist, in several species, between the compositional properties of sets of ex novo predicted genes and genes that have been experimentally detected and/or verified. This is particularly evident in the estimated gene set (>45,000 genes) of the recently sequenced rice genome, where roughly half the predicted genes are compositionally unusual and have no known orthologues in the dicot Arabidopsis. In a few cases such differences might suggest a bias in experimental gene-finding protocols, but the quasi-random nature of the compositionally aberrant predicted genes is a strong indication that many, if not most, of them are false positives. It therefore appears that some important features of coding regions have not yet been taken into account in existing gene prediction programs. Statistical base compositional properties of curated gene data sets from vertebrates, which we briefly review here, should therefore provide a useful benchmark for fine-tuning probabilistic gene models and model parameters that are currently in use.  相似文献   

6.
Zhang CT  Zhang R 《Proteins》2001,43(4):520-522
Nowadays even a 1% increase of the accuracy for the secondary structure prediction is considered remarkable progress. In this case, we have to consider the reasonableness of the accuracy index Q3, which is used widely. A refined accuracy index, called Q8, is proposed to evaluate algorithms of secondary structure prediction. It is shown that Q8 is superior to the widely used index Q3 in that the former carries more information of the predictive accuracy matrix than does the latter. Therefore, algorithms are evaluated more objectively by Q8 than Q3. Based on 396 nonhomologous proteins, five currently available algorithms of secondary structure prediction were evaluated and compared using the new index Q8. Of the five algorithms, PHD turned out to be the unique algorithm, with Q8 accuracy better than 70%. It is suggested that Q3 should be replaced by Q8 in evaluating secondary structure prediction in future studies.  相似文献   

7.
8.
We study the coding potential of human DNA sequences, using the positional asymmetry function (D(p)) and the positional information function (I(q)). Both D(p)and I(q)are based on the positional dependence of single nucleotide frequencies. We investigate the accuracy of D(p)and I(q)in distinguishing coding and non-coding DNA as a function of the parameters p and q, respectively, and explore at which parameters p(opt)and q(opt)both D(p)and I(q)distinguish coding and non-coding DNA most accurately. We compare our findings with classically used parameter values and find that optimized coding potentials yield comparable accuracies as classical frame-independent coding potentials trained on prior data. We find that p(opt)and q(opt)vary only slightly with the sequence length.  相似文献   

9.
Ribonucleic acid (RNA) secondary structure prediction continues to be a significant challenge, in particular when attempting to model sequences with less rigidly defined structures, such as messenger and non-coding RNAs. Crucial to interpreting RNA structures as they pertain to individual phenotypes is the ability to detect RNAs with large structural disparities caused by a single nucleotide variant (SNV) or riboSNitches. A recently published human genome-wide parallel analysis of RNA structure (PARS) study identified a large number of riboSNitches as well as non-riboSNitches, providing an unprecedented set of RNA sequences against which to benchmark structure prediction algorithms. Here we evaluate 11 different RNA folding algorithms’ riboSNitch prediction performance on these data. We find that recent algorithms designed specifically to predict the effects of SNVs on RNA structure, in particular remuRNA, RNAsnp and SNPfold, perform best on the most rigorously validated subsets of the benchmark data. In addition, our benchmark indicates that general structure prediction algorithms (e.g. RNAfold and RNAstructure) have overall better performance if base pairing probabilities are considered rather than minimum free energy calculations. Although overall aggregate algorithmic performance on the full set of riboSNitches is relatively low, significant improvement is possible if the highest confidence predictions are evaluated independently.  相似文献   

10.

Background  

MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms.  相似文献   

11.
12.
编码锌指蛋白的人类新基因TFL76的电子克隆   总被引:2,自引:1,他引:1  
目的:根据基因同源同功原理电子克隆人类新基因。方法:利用基于基因识别软件Genescan和EST拼接的同源基因克隆法得到人类新基因序列TFL76,再利用生物信息学数据库和软件对其进行功能的预测和分析。结果:TFL76的cDNA序列长2268bp,开放阅读框编码677个氨基酸残基,含12个连续的C2H2型锌指基序,其分子量为76kDa。编码区序列被4个内含子分割。染色体定位于19q13.4。此位点存在很多与胃癌、膀胱癌、乳腺癌等癌症相关的基因。TFL76的N末端含有多种蛋白激酶的磷酸化位点和核定位信号。结论:TFL76可能是一个和癌症相关的核转录因子。  相似文献   

13.
MOTIVATION: Computational gene identification plays an important role in genome projects. The approaches used in gene identification programs are often tuned to one particular organism, and accuracy for one organism or class of organism does not necessarily translate to accurate predictions for other organisms. In this paper we evaluate five computer programs on their ability to locate coding regions and to predict gene structure in Neurospora crassa. One of these programs (FFG) was designed specifically for gene-finding in N.crassa, but the model parameters have not yet been fully 'tuned', and the program should thus be viewed as an initial prototype. The other four programs were neither designed nor tuned for N.crassa. RESULTS: We describe the data sets on which the experiments were performed, the approaches employed by the five algorithms: GenScan, HMMGene, GeneMark, Pombe and FFG, the methodology of our evaluation, and the results of the experiments. Our results show that, while none of the programs consistently performs well, overall the GenScan program has the best performance on sensitivity and Missing Exons (ME) while the HMMGene and FFG programs have good performance in locating the exons roughly. Additional work motivated by this study includes the creation of a tool for the automated evaluation of gene-finding programs, the collection of larger and more reliable data sets for N.crassa, parameterization of the model used in FFG to produce a more accurate gene-finding program for this species, and a more in-depth evaluation of the reasons that existing programs generally fail for N.crassa. AVAILABILITY: Data sets, the FFG program source code, and links to the other programs analyzed are available at http://jerry.cs.uga.edu/~wang/genefind.html. CONTACT: eileen@cs.uga.edu.  相似文献   

14.
In this paper, we review developments in probabilistic methods of gene recognition in prokaryotic genomes with the emphasis on connections to the general theory of hidden Markov models (HMM). We show that the Bayesian method implemented in GeneMark, a frequently used gene-finding tool, can be augmented and reintroduced as a rigorous forward-backward (FB) algorithm for local posterior decoding described in the HMM theory. Another earlier developed method, prokaryotic GeneMark.hmm, uses a modification of the Viterbi algorithm for HMM with duration to identify the most likely global path through hidden functional states given the DNA sequence. GeneMark and GeneMark.hmm programs are worth using in concert for analysing prokaryotic DNA sequences that arguably do not follow any exact mathematical model. The new extension of GeneMark using the FB algorithm was implemented in the software program GeneMark.fba. Given the DNA sequence, this program determines an a posteriori probability for each nucleotide to belong to coding or non-coding region. Also, for any open reading frame (ORF), it assigns a score defined as a probabilistic measure of all paths through hidden states that traverse the ORF as a coding region. The prediction accuracy of GeneMark.fba determined in our tests was compared favourably to the accuracy of the initial (standard) GeneMark program. Comparison to the prokaryotic GeneMark.hmm has also demonstrated a certain, yet species-specific, degree of improvement in raw gene detection, ie detection of correct reading frame (and stop codon). The accuracy of exact gene prediction, which is concerned about precise prediction of gene start (which in a prokaryotic genome unambiguously defines the reading frame and stop codon, thus, the whole protein product), still remains more accurate in GeneMarkS, which uses more elaborate HMM to specifically address this task.  相似文献   

15.

Background  

An increasing number of researchers have released novel RNA structure analysis and prediction algorithms for comparative approaches to structure prediction. Yet, independent benchmarking of these algorithms is rarely performed as is now common practice for protein-folding, gene-finding and multiple-sequence-alignment algorithms.  相似文献   

16.
The 3-base periodicity, identified as a pronounced peak at the frequency N/3 (N is the length of the DNA sequence) of the Fourier power spectrum of protein coding regions, is used as a marker in gene-finding algorithms to distinguish protein coding regions (exons) and noncoding regions (introns) of genomes. In this paper, we reveal the explanation of this phenomenon which results from a nonuniform distribution of nucleotides in the three coding positions. There is a linear correlation between the nucleotide distributions in the three codon positions and the power spectrum at the frequency N/3. Furthermore, this study indicates the relationship between the length of a DNA sequence and the variance of nucleotide distributions and the average Fourier power spectrum, which is the noise signal in gene-finding methods. The results presented in this paper provide an efficient way to compute the Fourier power spectrum at N/3 and the noise signal in gene-finding methods by calculating the nucleotide distributions in the three codon positions.  相似文献   

17.
Abstract

Algorithms of secondary structure prediction have undergone the developments of nearly 30 years. However, the problem of how to appropriately evaluate and compare algorithms has not yet completely solved. A graphic method to evaluate algorithms of secondary structure prediction has been proposed here. Traditionally, the performance of an algorithm is evaluated by a number, i.e., accuracy of various definitions. Instead of a number, we use a graph to completely evaluate an algorithm, in which the mapping points are distributed in a three-dimensional space. Each point represents the predictive result of the secondary structure of a protein. Because the distribution of mapping points in the 3D space generally contains more information than a number or a set of numbers, it is expected that algorithms may be evaluated and compared by the proposed graphic method more objectively. Based on the point distribution, six evaluation parameters are proposed, which describe the overall performance of the algorithm evaluated. Furthermore, the graphic method is simple and intuitive. As an example of application, two advanced algorithms, i.e., the PHD and NNpredict methods, are evaluated and compared. It is shown that there is still much room for further improvement for both algorithms. It is pointed out that the accuracy for predicting either the α-helix or β-strand in proteins with higher α-helix or β-strand content, respectively, should be greatly improved for both algorithms.  相似文献   

18.
MOTIVATION: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded for simultaneously in one direction. Conventional hidden Markov model (HMM)-based gene-finding algorithms may typically find it difficult to identify multiple coding regions, since in general their topologies do not allow for the presence of overlapping or nested genes. Comparative methods have therefore been restricted to likelihood ratio tests on potential regions as to being double or single coding, using the fact that the constrictions forced upon multiple-coding nucleotides will result in atypical sequence evolution. Exploiting these same constraints, we present an HMM based gene-finding program, which allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. RESULTS: We apply our method to 15 pairwise alignments of six different HIV2 genomes. Given sufficient evolutionary distance between the two sequences, we achieve sensitivity of approximately 84-89% and specificity of approximately 97-99.9%. We additionally annotate three pairwise alignments of the more distantly related HIV1 and HIV2, as well as of two different hepatitis viruses, attaining results of approximately 87% sensitivity and approximately 98.5% specificity. We subsequently incorporate prior knowledge by 'knowing' the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate that conservation of gene structure on top of nucleotide sequence is a valuable source of information, especially in distantly related genomes. AVAILABILITY: The Java code is available from the authors.  相似文献   

19.
A new system, ZCURVE 1.0, for finding protein- coding genes in bacterial and archaeal genomes has been proposed. The current algorithm, which is based on the Z curve representation of the DNA sequences, lays stress on the global statistical features of protein-coding genes by taking the frequencies of bases at three codon positions into account. In ZCURVE 1.0, since only 33 parameters are used to characterize the coding sequences, it gives better consideration to both typical and atypical cases, whereas in Markov-model-based methods, e.g. Glimmer 2.02, thousands of parameters are trained, which may result in less adaptability. To compare the performance of the new system with that of Glimmer 2.02, both systems were run, respectively, for 18 genomes not annotated by the Glimmer system. Comparisons were also performed for predicting some function-known genes by both systems. Consequently, the average accuracy of both systems is well matched; however, ZCURVE 1.0 has more accurate gene start prediction, lower additional prediction rate and higher accuracy for the prediction of horizontally transferred genes. It is shown that the joint applications of both systems greatly improve gene-finding results. For a typical genome, e.g. Escherichia coli, the system ZCURVE 1.0 takes approximately 2 min on a Pentium III 866 PC without any human intervention. The system ZCURVE 1.0 is freely available at: http://tubic. tju.edu.cn/Zcurve_B/.  相似文献   

20.
A graphic approach to evaluate algorithms of secondary structure prediction   总被引:3,自引:0,他引:3  
Algorithms of secondary structure prediction have undergone the developments of nearly 30 years. However, the problem of how to appropriately evaluate and compare algorithms has not yet completely solved. A graphic method to evaluate algorithms of secondary structure prediction has been proposed here. Traditionally, the performance of an algorithm is evaluated by a number, i.e., accuracy of various definitions. Instead of a number, we use a graph to completely evaluate an algorithm, in which the mapping points are distributed in a three-dimensional space. Each point represents the predictive result of the secondary structure of a protein. Because the distribution of mapping points in the 3D space generally contains more information than a number or a set of numbers, it is expected that algorithms may be evaluated and compared by the proposed graphic method more objectively. Based on the point distribution, six evaluation parameters are proposed, which describe the overall performance of the algorithm evaluated. Furthermore, the graphic method is simple and intuitive. As an example of application, two advanced algorithms, i.e., the PHD and NNpredict methods, are evaluated and compared. It is shown that there is still much room for further improvement for both algorithms. It is pointed out that the accuracy for predicting either the alpha-helix or beta-strand in proteins with higher alpha-helix or beta-strand content, respectively, should be greatly improved for both algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号