首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laboratory incubation experiments have been carried out to quantify net nitrogen mineralization and nitrification in oak-beech litter at temperatures ranging from 0 to 30°C. Net mineralization was linearly proportional to temperature. Nitrification was inhibited at 0,5 and 30°C. As compared with soils under cultivation, there is only restricted knowledge of nitrification kinetics in acid forest litters, especially when temperature is considered. With these litter types, one should be cautious applying high incubation temperatures, which seldomly occur under field conditions.  相似文献   

2.
A technique for measuring net rates of mineralization under field conditions is described. Soil cores were incubated in the field in sealed containers with acetylene to inhibit nitrification and thereby minimize losses of N through denitrification. Mineralization was estimated as the difference between the mineral N content after a 14-d incubation and that determined from soil samples taken at the start of incubation. Mineralization in the spring and summer in unfertilized plots in the field amounted to 90 and 70 kg N ha−1 in S.E. England under grass and grass/clover swards, respectively, and 40 kg N ha−1 under a grass sward in S.W. England. Daily rates of mineralization ranged from 0.02 to 1.90 kg N ha−1, with peak values related to re-wetting of the soil after dry weather. Laboratory incubation of soil showed that neither the low concentration of acetylene (2% v/v) adopted for field incubation, nor the accumulation of mineral N during incubation was likely to affect the total measurement, but that frequent and regular soil sampling was necessary to minimize the effects of changes in soil water content. Estimates for mineralization over the whole growing season (180 d) were obtained for two years from extrapolation of the early season field measurements and were, on average, 50% higher than predictions based on a chemical extraction index of potentially mineralizable N.  相似文献   

3.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

4.
The biological activity in organic soil layers under spruce was determined by measuring rates of carbon dioxide emission. Under laboratory conditions, biological activity was found to be optimal at temperatures ranging from 20°C to 35°C and at water contents ranging from 40% to 60%. Weakly acidic to neutral pH values of organic materials stimulated microbial CO2 formation whereas high acidity (pH<2.4) inhibited it. Low CO2 emission rates were observed at pH<2.4 and therefore populations of microorganisms highly resistant to acid must be present in the organic materials. The OL horizon was found to contribute 50% of the total potential C-mineralization with the lower horizons OF and OH contributing 25% each. In simulating acid rain experiments, analysis of water percolating through the organic layers was shown to cause constant leaching of cations at the pH 3 to 6.5 range. In this respect, the OL horizon exerts a buffering effect. It can be postulated that the acidification of soil organic material under spruce by acid rain inhibits C-mineralization and decreases the release of mineral nutrients. In the long run this can be expected to affect the turnover of mineral nutrients in forest ecosystems.  相似文献   

5.
土壤动物与N素循环及对N沉降的响应   总被引:15,自引:7,他引:15  
徐国良  莫江明  周国逸  彭少麟 《生态学报》2003,23(11):2453-2463
以主要的生态过程之一——N循环为对象,论述了土壤动物不仅对凋落物的分解有重要影响,而且在N素矿化和植物对N的吸收过程中也起着重要作用。同时,日益严重的全球变化问题之一——N沉降对土壤动物的多样性及其在生态系统中的功能构成了极大的威胁。另还对土壤动物与N循环研究的方法、土壤动物在N循环过程中的作用机制、热带地区的需求及N沉降下土壤动物的响应作了探讨,并提出,开展大尺度的专类研究及长期定位研究成为下一步研究的需要。  相似文献   

6.
Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 °C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.  相似文献   

7.
哀牢山中山湿性常绿阔叶林土壤氮转化的海拔效应   总被引:4,自引:0,他引:4  
采用树脂芯法将哀牢山中山湿性常绿阔叶林内土壤分别移植到中海拔的次生林和低海拔的人工林下培养,并以原地培养为对照,对土壤氮素转化的海拔效应进行了研究.土壤氮素的净矿化速率、净硝化速率和淋溶速率受季节和海拔的影响极为显著(P<0.01).海拔的影响在雨季前期最显著,高海拔土壤的净矿化和净硝化速率分别为-5.81和-4.18mg N·kg-1·60d-1,移植到中、低海拔培养后,净矿化速率分别为20.92和44.15 mgN·kg-1· 60 d-1,净硝化速率分别为17.07和20.38 mgN· kg-1 ·60d-1,淋溶量也分别增加了0.37倍和2.77倍.由于雨季中后期反硝化作用增加导致净矿化和净硝化速率降低,导致高、中海拔培养的土壤净氮矿化速率在雨季中期达到最高值,雨季后期降低.由此可推断,未来的气候变暖很可能会加快哀牢山中山湿性常绿阔叶林土壤氮素的转化速率和气态损失量.  相似文献   

8.
基于长期模拟酸雨森林样地,利用箱式法同步测定了不同酸雨强度处理下森林土壤N2O排放通量,研究了模拟酸雨对我国南亚热带针阔叶混交林和季风常绿阔叶林两种代表性森林土壤N2O排放的影响.结果 表明:连续5年(2014-2018年)观测周期内,两种林型土壤N2O排放通量在各模拟酸雨处理下均表现出明显的季节变化特征,湿季排放通量...  相似文献   

9.
四种温带森林土壤氮矿化与硝化时空格局   总被引:11,自引:0,他引:11  
傅民杰  王传宽  王颖  刘实 《生态学报》2009,29(7):3747-3758
利用PVC管原位培养连续取样法测定了东北地区4种具有代表性的森林生态系统(硬阔叶林、蒙古栎林、红松林、落叶松林)土壤氮素矿化、硝化的时间动态及氮矿化的空间分布格局.结果表明:4种森林土壤氮素矿化存在明显的时空变异.蒙古栎和红松林土壤在6月份表现出强烈的氮矿化和硝化作用,而硬阔叶林及落叶松林7月份氮素矿化强烈.4种森林生态系统上层土壤的氮净矿(硝)化率显著高于下层土壤.4种林型土壤的硝化过程在氮矿化过程中占有重要地位,其NO-3-N在无机氮中的比例分别为:79.9%~91.1%(硬阔叶林)、50.7%~80.5%(蒙古栎林)、54.1%~92.0%(红松林)、63.7%~86.5%(落叶松林).生态系统构成决定了土壤氮素的矿化能力.阔叶林和针阔混交林生态系统矿化率大于纯针叶林生态系统.硬阔叶林、红松林、蒙古栎林、落叶松林的平均净矿化率分别为:(0.58±0.01) mg · kg-1 · d-1、(0.47±0.19) mg · kg-1 · d-1、(0.39±0.11) mg · kg-1 · d-1和(0.23±0.06) mg · kg-1 · d-1.4种林型氮素矿化作用与地下5 cm温度呈正相关,并受土壤表层 (0~10 cm)水分显著影响.土壤微生物量氮与土壤氮矿化呈显著正相关.  相似文献   

10.
森林土壤氮素转换及其对氮沉降的响应   总被引:40,自引:5,他引:40  
近几十年人类活动向大气中排放的含氮化合物激增 ,并引起大气氮沉降也成比例增加。目前 ,氮沉降的增加使一些森林生态系统结构和功能发生改变 ,甚至衰退。近 2 0 a欧洲和北美有关氮沉降及其对森林生态系统的影响方面的研究较多 ,而我国少有涉及。森林土壤氮素转换是森林生态系统氮素循环的一个重要的组成部分 ,而矿化、硝化和反硝化作用是其核心过程 ,氮沉降作为驱动因子势必改变森林土壤氮素转换速度、方向和通量。根据国外近 2 0 a有关研究 ,首先介绍了森林土壤氮素转换过程和强度 ,论述森林土壤氮素在生态系统氮素循环中的作用 ,然后在此基础上 ,介绍了氮沉降对森林土壤氮素循环的研究途径 ,探讨了氮沉降对森林土壤氮素矿化、硝化和反硝化作用的影响及其机理  相似文献   

11.
Nitrogen transformations were studied in the forest floor and mineral soil (0–5 cm) of a Douglas fir forest (Pseudotsuga menziesii (Mirb.) Franco.) and a Scots pine forest (Pinus sylvestris L.) in the Netherlands. Curren nitrogen depositions (40 and 56 kg N ha-1 yr-1, respectively) were reduced to natural background levels (1–2 kg N ha-1 yr-1) by a roof construction. The study concentrated on rates and dynamic properties of nitrogen transformations and their link with the leaching pattern and nitrogen uptake of the vegetation under high and reduced nitrogen deposition levels. Results of an in situ field incubation experiment and laboratory incubations were compared. No effect of the reduced N deposition on nitrogen transformations was found in the Douglas fir forest. In the Scots pine forest, however, during some periods of the year nitrogen transformations were significantly decreased under the low nitrogen deposition level. At low nitrogen inputs a net immobilization occurred during most of the year leading to a very small net mineralization for the whole year. In laboratory and in individual field plots nitrogen transformations were negatively correlated with initial inorganic nitrogen concentrations. Nitrogen budget estimates showed that nitrogen transformations were probably underestimated by the in situ incubation technique. Nevertheless less nitrogen was available for plant uptake and leaching at the low deposition plots.  相似文献   

12.
Castaldi  Simona  Smith  Keith A. 《Plant and Soil》1998,199(2):229-238
N2O emissions from two slightly alkaline sandy soils, from arable land and a woodland, were determined in a laboratory experiment in which the soils were incubated with different sources of nitrogen, with or without glucose, and with 0, 1 and 100 mL C2H2 L-1. Large differences in the rate of N2O production were observed between the two soils and between the different N treatments. The arable soil showed very low N2O emissions derived from reduced forms of N as compared with the N2O which was produced when the soil was provided with NO 2 - or NO 3 - and a C source, suggesting a very active denitrifier population. In contrast, the woodland soil showed a very low denitrification activity and a much higher N2O production derived from the oxidation of NH 4 + and reduction of NO 2 - by some processes probably mediated by autotrophic or heterotrophic nitrifiers or dissimilatory NO 2 - reducers. In both soils, the highest N2O emissions were induced by NO 2 - addition. Those emissions were demonstrated to have a biological origin, as no significant N2O emissions were measured when the soil was autoclaved.  相似文献   

13.
14.
Aims Land use management affects plant carbon (C) supply and soil environments and hence alters soil nitrogen (N) dynamics, with consequent feedbacks to terrestrial ecosystem productivity. The objective of this study was to better identify mechanisms by which land-use management (clipping and shading) regulates soil N in a tallgrass prairie, OK, USA.Methods We conducted 1-year clipping and shading experiment to investigate the effects of changes in land-use management (soil microclimates, plant C substrate supply and microbial activity) on soil inorganic N (NH 4 + ? N and NO 3 ? ? N), net N mineralization and nitrification in a tallgrass prairie.Important findings Land-use management through clipping and/or shading significantly increased annual mean inorganic N, possibly due to lowered plant N uptake and decreased microbial N immobilization into biomass growth. Shading significantly increased annual mean mineralization rates (P < 0.05). Clipping slightly decreased annual mean N nitrification rates whereas shading significantly increased annual mean N nitrification rates. Soil microclimate significantly explained 36% of the variation in NO 3 ? ? N concentrations (P = 0.004). However, soil respiration, a predictor of plant C substrate supply and microbial activity, was negatively correlated with NH 4 + ? N concentrations (P = 0.0009), net N mineralization (P = 0.0037) and nitrification rates (P = 0.0028) across treatments. Our results suggest that change in C substrate supply and microbial activity under clipping and/or shading is a critical control on NH 4 + ? N, net N mineralization and nitrification rates, whereas clipping and shading-induced soil microclimate change can be important for NO 3 ? ? N variation in the tallgrass prairie.  相似文献   

15.
To demonstrate the contribution of atmospheric ammonium to soil acidification in acid forest soils, a field study with13N-ammonium as tracer was performed in an oak-birch forest soil. Monitoring and analysis of soil solutions from various depths on the13N-ammonium and15N-nitrate contents, showed that about 54% of the applied15N-ammonium was oxidized to nitrate in the forest floor. Over a period of one year about 20% of the15N remained as organic nitrogen in this layer. The percentage15N enrichment in ammonium and nitrate were in the same range in all the forest floor percolates, indicating that even in extremely acid forest soils (pH < 4) nitrate formation from ammonium can occur. Clearly, atmospheric ammonium can contribute to soil acidification even at low soil pH.  相似文献   

16.
Brierley  E. D. R.  Wood  M.  Shaw  P. J. A. 《Plant and Soil》2001,231(1):97-104
Soil N transformations were studied at Ironhill, near Liphook, UK as part of a forest fumigation experiment. Nitrification potential was measured in a humoferric podzol soil, of pH 3 (in 0.01 M CaCl2). An initial experiment into nitrogen mineralisation potential indicated that nitrification was linked strongly to the species of coniferous tree growing in the soil. Transfer of soil solution between soils had no influence on mineralisation potential and allelopathic effects of the trees were not demonstrated. The initial finding was attributed subsequently to the type of ground vegetation and its management. Attempts to reproduce soil conditions, which promoted nitrification, were partially successful.Soil, from the Ironhill site, was incubated with various nitrogenous substrates and other nutrients and sources of carbon to test whether heterotrophs were responsible for nitrification. Organic N (which was ammonified) promoted nitrification, but the addition of ammonium was inhibitory unless supplied with a readily available carbon source such as acetate. Nitrification potential was unaffected when soils were incubated with an inhibitor of autotrophic nitrification. The results of these experiments supported strongly the hypothesis that heterotrophic organisms were responsible for nitrification in this soil.  相似文献   

17.
采用同位素15N库稀释技术研究了 3种不同利用类型羊草草地土壤氮的总矿化、硝化速率以及无机氮总消耗速率 ,3种类型草地分别为 :保护区 (无人为扰动 )、割草场、过度放牧地。结果表明 :4月份过度放牧场的总矿化速率最高 ,为2 1 .3μg N/ ( g土· d) ,7月份割草场的值最高 ,为 38.5μg N/ ( g土· d) ,9月份保护区最高 ,值为 1 5 .6μg N/ ( g土· d) ,总的来看 ,保护区的总矿化速率高于其它利用类型草地 ,这与土壤有机氮的含量较高有关 ,3种类型草地铵态氮的消耗速率与总矿化速率有类似的趋势。 3种利用类型草地的氮总矿化速率均以 7月份为最高 ,分别为 36 .5、38.5、2 9.8μg N/ ( g土· d)。总硝化速率放牧场最高 ,保护区、割草场、放牧场 7月份的总硝化速率分别为 1 8.6、2 1 .4 5、35 .4 5 μg N/ ( g土·d)。 3种利用类型草地中放牧场的硝态氮含量最高 ,其消耗的速率也高于其它两种利用类型草地  相似文献   

18.
Species richness (SR) and functional group richness (FGR) are often confounded in both observational and experimental field studies of biodiversity and ecosystem function. This precludes discernment of their separate influences on ecosystem processes, including nitrogen (N) cycling, and how those influences might be moderated by global change factors. In a 17‐year field study of grassland species, we used two full factorial experiments to independently vary SR (one or four species, with FGR = 1) and FGR (1–4 groups, with SR = 4) to assess SR and FGR effects on ecosystem N cycling and its response to elevated carbon dioxide (CO2) and N addition. We hypothesized that increased plant diversity (either SR or FGR) and elevated CO2 would enhance plant N pools because of greater plant N uptake, but decrease soil N cycling rates because of greater soil carbon inputs and microbial N immobilization. In partial support of these hypotheses, increasing SR or FGR (holding the other constant) enhanced total plant N pools and decreased soil nitrate pools, largely through higher root biomass, and increasing FGR strongly reduced mineralization rates, because of lower root N concentrations. In contrast, increasing SR (holding FGR constant and despite increasing total plant C and N pools) did not alter root N concentrations or net N mineralization rates. Elevated CO2 had minimal effects on plant and soil N metrics and their responses to plant diversity, whereas enriched N increased plant and soil N pools, but not soil N fluxes. These results show that functional diversity had additional effects on both plant N pools and rates of soil N cycling that were independent of those of species richness.  相似文献   

19.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for reclamation of open‐pit oil sands mining disturbed land in northern Alberta, Canada; coarse woody debris (CWD) is another source of organic matter for land reclamation. We investigated net nitrogen (N) transformation rates in FMM and PMM cover soils near and away from CWD 4–6 years after oil sands reclamation. Monthly net nitrification and N mineralization rates varied over time; however, mean rates across the incubation periods and microbial biomass were greater (p < 0.05) in FMM than in PMM. Net N mineralization rates were positively related to soil temperature (p < 0.001) and microbial biomass carbon (p = 0.045). Net N transformation rates and inorganic N concentrations were not affected by CWD; however, the greater 15N isotope ratio of ammonium near CWD than away from CWD indicates that CWD application increased both gross N mineralization/nitrification (causing N isotope fractionation) and gross N immobilization (no isotopic fractionation). Microbial biomass was greater near CWD than away from CWD, indicating the greater potential for N immobilization near CWD. We conclude that (1) CWD application affected soil microbial properties and would create spatial variability and diverse microsites and (2) cover soil type and CWD application had differential effects on net N transformation rates. Applying FMM with CWD for oil sands reclamation is recommended to increase N availability and microsites.  相似文献   

20.
Is the sequential in situ incubation of undisturbed soil cores, developed for forest stands applicable to arable soils? The incubation of covered and uncovered soil cores allows the estimation of net nitrogen mineralization (NNM), plant nitrogen uptake (Nuptake) and potential leaching losses (Ntrans). The amounts and temporal dynamics of these N fluxes were determined at four arable soils in a two-year study. Results suggest that: (i) the method can not be recommended for the estimation of N uptake and leaching losses, but (ii) it is suitable for the estimation of NNM; (iii) incubations should preferably be started when soil is moist; (iv) the length of incubation periods should be reduced (<4 weeks); (v) dynamics of NNM is mainly determined by temperature and moisture conditions if there is no interference by agricultural management. Inputs of straw, manure, slurry or green manure strongly influence the amount and the dynamics of NNM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号