首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine structure of the dorsal ocellus of the worker honeybee   总被引:1,自引:0,他引:1  
The three dorsal ocelli of worker honeybees have been studied by light and electron microscopy. Each ocellus has a single flattened spheroidal lens and about 800 elongated retinular cells. Retinular cells are paired and form a two-part plate-like rhabdom between their distal processes. Each rhabdomere comprises parallel microvilli projecting laterally from the apposed retinular cells. Primary receptor cell axons synapse within the ocellus with ocellar nerve fibers of two different calibers. Each ocellus has eight thick fibers ca 10 m?m in diameter and several thinner ones less than 3 m?m in diameter. Fine structural evidence suggests that retinular axons end presynaptically on both types of ocellar nerve fibers. Since all retinular cells apparently synapse repeatedly with the thick fibers this involves a convergence of about 100:1. Thick fibers always terminate postsynaptically within the ocellus while thin fibers terminate presynaptically on other thin fibers, thick fibers or retinular axons. Structural evidence for synaptic polarization indicates that retinular cells and thick fibers are afferent, thin fibers efferent. Thus complex processing of the ocellar visual input can occur before the secondary neurons of the three ocelli converge to form the single short ocellar nerve which runs to the posterior forebrain.  相似文献   

2.
Ong JE 《Tissue & cell》1970,2(4):589-610
The nauplius eye consists of one median and two lateral ocelli, each within a pigment cup. The three pigment cups are made up from two multi-nucleate pigment cells: each cell forming one lateral cup and half of the median cup. The three cups are lined on the insides by tapetal cells which contain layers of reflectile crystals. Each of the ocelli contains six sensory cells which protrude from the rims of the pigment cups and the protruding parts are sheathed by the conjunctiva cells. The whole eye is enveloped by a thin membrane which also sheaths the proximal parts of the five nerve bundles that leave the eye. All the sensory cells of the lateral ocelli are similar and have rhabdomeric microvilli on the terminal end, and contain phaosomes and a multitude of other organelles and cytoplasmic inclusions. The complex median ocellus contains a superior group of three retinular cells, linked by interdigitating processes, and an inferior group consisting of a large central cell enclosed in two cup-shaped peripheral retinular cells. A two-tiered rhabdome arrangement exists, with a rather complex inferior rhabdome set made up of a central rhabdomere and two hemi-annulate rhabdomeres. The cytoplasm of the retinular cells of the median ocellus lack phaosomes but instead contain double-walled tubular elements, possibly formed by the inpushings of microvilli into adjacent cells. The possible functional significance of the unique arrangement seen in the median ocellus is discussed. The retinular cells are of the inverse type. There are no efferent nerve fibres from the brain nor any nervous connection between the lateral and the median ocelli.  相似文献   

3.
The planktonic barnacle larva has a single median ocellus (nauplius eye), while the adult possesses two distinct sets of photoreceptors; a pair of lateral ocelli and a single median ocellus. The nauplius eye of the cypris larva of Balanus amphitrite hawaiiensis is composed of 14 visual cells grouped into three components (a pair of lateral components and a single ventral component) surrounding two centrally located pigment cells; each lateral component consists of 5 visual cells and the ventral component, 4 visual cells. In each component, the rhabdom is made up of apposing microvilli arising directly from the neighboring visual cell bodies.
During metamorphosis into the adult form, the three components of the median ocellus become separated. Each lateral component migrates laterally on the mantle and is remodeled into the adult lateral ocellus, losing two visual cells but gaining new pigment and tapetum cells in the process. The ventral component remains in the mid portion and becomes the adult median ocellus without fundamental modification in composition. The visual cells in both ocelli undergo a marked increase in volume and form many finger-like dendrites. Rhabdomes are made up of interdigitating microvilli arising from the the dendrite tips.  相似文献   

4.
The morphology and fine structure of the ocelli of Triatoma infestans have been analyzed by means of light and electron microscopy. The two dorsal ocelli of this species are located behind the compound eyes, looking dorsally and frontally. Externally, the ocelli are marked by the corneal lenses virtually spherical in form and limited internally by a cuticular apodeme. The lens focuses the incoming rays beyond the retina. A single layer of corneagen cells lies below the cuticular lens. The corneagen cells and photoreceptors are arranged in a cup-like fashion beneath the cuticular lens. A distal retinal zone comprises the rhabdoms, which are laterally connected in an hexagonal meshwork. A middle retinal zone comprises the receptor cell segment free of rhabdom, and a proximal zone their axons. In the middle zone, the oviform nuclei and spheroids are located. Screening pigment granules are present within the retinal cell. Spherical mitochondria are homogeneously distributed in the cytoplasm of the cell body. In the axonal zone, mitochondria are found in the peripheral region. Axons from receptor cells extend into the ocellar neuropile at the base of the ocelli, to synapse with second order neurons. The large axons of second order neurons are bundled by glial cells. The ocellar plexus exhibits a high diversity of synaptic unions (i.e. axo-dendritic, axo-axonic, dendro-axonic, and dendro-dendritic).  相似文献   

5.
The ocellus of the cockroach,Periplaneta americana (Blattariae)   总被引:3,自引:0,他引:3  
Summary The ocelli of Periplaneta americana were studied by light and electron microscopy. The view that the ocellus of the cockroach represents a degenerated structure can no longer be supported. All organelles necessary for function are present.The club-shaped retinular cells lie homogeneously distributed in the cupule of the ocellus. Rhabdoms are seen as sickle-, y-, x-or star-shaped structures with up to six cells in formation. Cells were found which had formed two rhabdomeres.The mass of cell organelles lies in the cytoplasm between the cell nucleus and the rhabdom. Smooth endoplasmic reticulum is wound into a spindle formation of considerable size at the origin of the axon in some cells. A cylindrical body in which 10–40 microtubules are packed, as yet unknown in insect retinular cells, is described.The receptory area of the ocellus terminates in a tapetum which contains granules, soluble in alcohol. The axon bundles of the retinular cells run through the tapetum and immediately thereafter make synaptic contact with dendrites of the ocellar nerve cells, while still within the ocellus.The authors are indebted to Mrs. Margaret Weber-Wood for her linguistic assistance  相似文献   

6.
Summary The fine structure of the small compact ocelli (50–100 m in diameter) of Polyorchis penicillatus is described. The ocellar cup is formed of pigment cells and receptor cells. The pigment cells occur in approximately a 2:1 ratio to the receptor cells. Each pigment cell has a process that may pass through the presumed photosensory region. Pigment cells are connected to adjacent receptor cell processes by septate junctions. The sensory cells are bipolar with the apical part forming the receptor process and the basal part forming an axon 8–15 m long and 1–2 m in diameter. Each receptor cell axon forms a synapse with a single second order neuron but the sensory cells are also connected to the second order neurons postsynaptically. There are also synapses between adjacent second order neurons. The second order neurons lie outside the ocellar cup, next to the tentacular mesogloea. Each second order neuron forms an axon of about 1 m thickness. The axons on each side group together to form an optic nerve having 30–40 axons that travel around the tentacle base on either side and enter the outer nerve ring independently.  相似文献   

7.
The lateral ocelli of Scolopendra cingulata and Scolopendra oraniensis were examined by electron microscopy. A pigmented ocellar field with four eyes arranged in a rhomboid configuration is present frontolaterally on both sides of the head. Each lateral ocellus is cup-shaped and consists of a deeply set biconvex corneal lens, which is formed by 230–2,240 cornea-secreting epithelial cells. A crystalline cone is not developed. Two kinds of photoreceptive cells are present in the retinula. 561–1,026 cylindrical retinula cells with circumapically developed microvilli form a large distal rhabdom. Arranged in 13–18 horizontal rings, the distal retinula cells display a multilayered appearance. Each cell layer forms an axial ring of maximally 75 rhabdomeres. In addition, 71–127 club-shaped proximal retinula cells make up uni- or bidirectional rhabdomeres, whose microvilli interdigitate. 150–250 sheath cells are located at the periphery of the eye. Radial sheath cell processes encompass the soma of all retinula cells. Outside the eye cup there are several thin layers of external pigment cells, which not only ensheath the ocelli but also underlie the entire ocellar field, causing its darkly pigmented. The cornea-secreting epithelial cells, sheath cells and external pigment cells form a part of the basal matrix extending around the entire eye cup. Scolopendromorph lateral ocelli differ remarkably with respect to the eyes of other chilopods. The dual type retinula in scolopendromorph eyes supports the hypothesis of its homology with scutigeromorph ommatidia. Other features (e.g. cup-shaped profile of the eye, horizontally multilayered distal retinula cells, interdigitating proximal rhabdomeres, lack of a crystalline cone, presence of external pigment and sheath cells enveloping the entire retinula) do not have any equivalents in scutigeromorph ommatidia and would, therefore, not directly support homology. In fact, most of them (except the external pigment cells) might be interpreted as autapomorphies defining the Pleurostigmophora. Certain structures (e.g. sheath cells, interdigitating proximal rhabdomeres, discontinuous layer of cornea-secreting epithelial cells) are similar to those found in some lithobiid ocelli (e.g. Lithobius). The external pigment cells in Scolopendra species, however, must presently be regarded as an autapomorphy of the Scolopendromorpha.  相似文献   

8.
Summary The eyespots of tornariae of enteropneusts (Ptychodera flava from Hawaiian waters and an unknown species from southern California) were studied by electron microscopy. An ocellus is composed of two types of cells: sensory and supportive. The former is characterized by a bulbous cilium (with 9+2 axoneme) at its distal end, one or sometimes two arrays of microvilli from its sides below the cilium, and a basal axon. The latter features large, clear vesicles which presumably contained the reddish-orange pigment seen in the ocellus of a living larva. Five-day old tornariae of P. flava are positively phototactic. Both cilium and microvilli may function as photoreceptors. The tornarian ocellus studied is compared with eyespots of other invertebrates, and the evolutionary significance of its putative photoreceptors is discussed.We acknowledge the kind assistance of Drs. Michael G. Hadfield, University of Hawaii, and Russel L. Zimmer, Santa Catalina Marine Biological Laboratory, and the support of grant 10292 from the USPHS.  相似文献   

9.
Photoreceptors of cubozoan jellyfish   总被引:8,自引:2,他引:6  
Martin  Vicki J. 《Hydrobiologia》2004,530(1-3):135-144
The anatomically sophisticated visual system of the cubozoan jellyfish Carybdea marsupialis is described. Individual cubomedusae have eight complex eyes, each with a cornea, lens, and retina of ciliated photoreceptor cells, eight slit ocelli, and eight dimple ocelli. The photoreceptor cells of the complex eyes are bipolar and resemble vertebrate rod cells. Each photoreceptor has an outer cylindrical light-receptive segment that projects into a vitreous space that separates the lens and the retina, an inner segment rich in pigment granules, and a basal region housing the nucleus. The outer segment is a modified cilium with a 9 + 2 arrangement of microtubules plus stacks of membrane. These stacks of membrane form numerous discs that are oriented transversely to the long axis of the cell. The outer segment is connected to the inner segment by a slender stalk. The basal end of each photoreceptor forms an axon that projects into an underlying layer of interneurons. Each ocellus is composed of ciliated photoreceptor cells containing pigment granules. Rhodopsin-like and opsin-like proteins are found in the membrane stacks of the outer segments of the photoreceptors of the complex eyes. An ultraviolet-sensing opsin-like protein is present in the inner segments and basal regions of some of the photoreceptors of the complex eyes. Rhodopsin-like proteins are also detected in the photoreceptors of the slit ocelli. The cellular lens, composed of crystallin proteins, shows a paucity of organelles and a high concentration of homogeneous cytoplasm. Neurons expressing RFamide (Arg-Phe-amide) comprise a subset of interneurons found beneath the retinas of the complex eyes. RFamide-positive fibers extend from these neurons into the stalks of the rhopalia, eventually entering into the subumbrellar nerve ring. Vision may play a role in the navigation, feeding, and reproduction of the cubomedusae.  相似文献   

10.
Summary The cone cells and corneagenous cells possess extensive networks of smooth tubular endoplasmic reticulum that may be involved in optical reflectance and light-adaptational responses, respectively. The extracellular basal lamina of the basement membrane is confluent with glial cell capillary walls and may prove to be a viaduct for the transmission of hemolymph-borne substances to the retina or of retinal degradation products to the hemolymph. In addition to dense pigment granules, the distal pigment cells are shown for the first time to contain migratory reflecting platelets that are usually polymorphic in light-adapted eyes but are rectangular in dark-adapted eyes. In the latter these plates become aligned against the crystalline cones and presumably contribute to the reflection superposition optics of the grass shrimp. Dark-adapted retinular cells possess well-developed perirhabdomal cisternae, oblong or ovoid mitochondria, generally vesicular rough endoplasmic reticulum, and occasional, spherical, calcium-like intrarhabdomal inclusions. Light-adapted retinular cells possess poorly developed perirhabdomal cisternae, lamelliform rough endoplasmic reticulum, and condensed mitochondria frequently associated with lipid droplets and pigment granules. The cytoplasmic boundaries of the reflecting pigment cells expand into the extracellular spaces between individual ommatidial retinular cells during dark adaptation and recede to the interommatidial extracellular spaces during light adaptation. Cytoplasmic microfilament bundles found only at the bases of partially light-adapted rhabdomeric microvilli may be involved in microvillar shortening.  相似文献   

11.
Summary Compound eyes of larval and first postlarval grass shrimp (Palaemonetes pugio Holthuis) were studied with light and electron microscopy following adaptation to darkness or bright light. Larvae have well-developed apposition eyes, including 3 main types of accessory screening and reflecting pigments and a fourth class of putatively reflective granules recently described in adult shrimps. Rhabdoms contain orthogonally layered microvilli, and by the last larval stage, 8 retinular cells. Ocular accessory pigments in both light- and dark-adapted larvae are distributed much like those of light-adapted adults, but the distal mass of reflecting pigment is concentrated dorsally in larvae and ventrally in adults. Since larvae swim upside-down, reflecting pigment is oriented downward in all developmental stages and may function for countershading. Light and dark adaptational migrations of all 3 major accessory pigments commence abruptly at metamorphosis to the first postlarva. Upon dark adaptation in postlarvae, superposition optics remain impossible because (1) distal screening pigment migrates only slightly, (2) no clear zone has developed, and (3) the crystalline cones remain circular in cross section. Nevertheless, a slight improvement in photon catch is expected due to extensive redistributions of reflecting pigment and retinular cell screening pigment granules.
  相似文献   

12.
Thomas Spies 《Zoomorphology》1981,98(3):241-260
Summary The structural organization of the ocelli of several diplopod species has been studied by means of electron microscopy. The results provide evidence that diplopodan ocelli are derived from typical mandibulate ommatidia, which consequently had been present in diplopod ancestors. The recent representatives of the two sister groups, Pselaphognatha and Chilognatha are characterized by two essentially different types of eye morphology: The eyes of the Pselaphognatha comprise a bilayered rhabdom (built up by 3+4 retinular cells), a few corneagenous cells, a corneal lens, and two vitreous bodies. The latter probably represent relics of a former crystalline cone. On the contrary, the ocelli of the Chilognatha consist of a multilayered rhabdom (built up by a large number of retinular cells), numerous corneagenous cells, and a corneal lens. The dioptric apparatus lacks a crystalline cone. Further structural elements, the distribution of which varies, are the covering cells and processes of hypodermal cells which contain screening pigments. Whereas the eye of the Pselaphognatha can be traced back to a single ommatidium, the ocellus of the Chilognatha can only be interpreted as a merging product of several associated ommatidia or as the result of multiplication and rearrangement of former ommatidial elements. This concept is substantiated by analogous phenomena which occur within other arthropod groups and thus serve as models for the phylogeny of the diplopodan eyes. The comparison of the morphology and the ecology of palaeozoic and recent diplopods demonstrates that the disintegration of former facetted eyes and the modification of ommatidia were induced by the adaptation to cryptic modes of life.  相似文献   

13.
The lateral lens eye of adult Craterostigmus tasmanianus Pocock, 1902 (a centipede from Australia and New Zealand) was examined by light and electron microscopy. An elliptical, bipartite eye is located frontolaterally on either side of the head. The nearly circular posterior part of the eye is characterized by a plano-convex cornea, whereas no corneal elevation is visible in the crescentic anterior part. The so-called lateral ocellus appears cup-shaped in longitudinal section and includes a flattened corneal lens comprising a homogeneous and pigmentless epithelium of cornea-secreting cells. The retinula consists of two kinds of photoreceptive cells. The distribution of the distal retinula cells is highly irregular. Variable numbers of cells are grouped together in multilayered, thread-like unions extending from the ventral and dorsal margins into the center of the eye. Around their knob-like or bilobed apices the distal retinula cells give rise to fused polymorphic rhabdomeres. Both everse and inverse cells occur in the distal retinula. Smaller, club-shaped proximal retinula cells are present in the second (limited to the peripheral region) and proximal third of the eye, where they are arranged in dual cell units. In its apical region each unit produces a small, unidirectional rhabdom of interdigitating microvilli. All retinula cells are surrounded by numerous sheath cells. A thin basal lamina covers the whole eye cup, which, together with the distal part of the optic nerve, is wrapped by external pigment cells filled with granules of varying osmiophily. The eye of C. tasmanianus seemingly displays very high complexity compared to many other hitherto studied euarthropod eyes. Besides the complex arrangement of the entire retinula, the presence of a bipartite eye cup, intraocellar exocrine glands, inverse retinula cells, distal retinula cells with bilobed apices, separated pairs of proximal retinula cells, medio-retinal axon bundles, and the formation of a vertically partitioned, antler-like distal rhabdom represent apomorphies of the craterostigmomorph eye. These characters therefore collectively underline the separate position of the Craterostigmomorpha among pleurostigmophoran centipedes. The remaining retinal features of C. tasmanianus agree with those known from other chilopod eyes and, thus, may be considered plesiomorphies. Characters like the unicorneal eye cup, sheath cells, and proximal rhabdomeres with interdigitating microvilli were already present in the ground pattern of the Pleurostigmophora. Other retinal features were developed in the ancestral lineage of the Phylactometria (e.g., large elliptical eyes, external pigment cells, polygonal sculpturations on the corneal surface). The homology of all chilopod eyes (including Notostigmophora) is based principally on the possession of a dual type retinula.  相似文献   

14.
Ultrastructurally, the compound eyes of the luminescent marine ostracodes Vargula graminkola and V. tsujii are similar. These ostracodes have two lateral compound eyes, with relatively few ommatidia (13 and 20 respectively). They exhibit apposition type compound eyes as seen in many other arthropods. Each ommatidium includes: a flat, ectodermal cuticular covering, corneagen cells, two long cone cells that give rise to a large conspicuous crystalline cone, retinular cells, pigment cells, a microvillar rhabdom and proximal axonal neurons. The axons merge to form an optic nerve that extends into the brain through a short, muscular stalk that is surrounded externally by a cuticle. The number of retinular cells is typically six per ommatidium in V. graminicola and eight per ommatidium in V. tsujii. Screening pigment cells surround each ommatidium forming a layer that is about 5–15 pigment granules thick. In addition to pigment cells, the cytoplasm of the retinular cells includes numerous screening pigment granules. In light/dark adaptation, there are no obvious morphological differences in the orientation of the rhabdom or in the organization of the screening pigments. Both Vargula species studied are nocturnally active and bioluminescent suggesting that these eyes are capable receptors of the bright conspecific luminescence.  相似文献   

15.
U Zunke 《Malacologia》1979,18(1-2):1-5
The structure and some aspects of the development of the eye of Succinea putris were studied with the aid of the electron microscope. The eye is of the closed vesicle type and is composed of retina, cornea, vitreous body, lens and optic nerve. Three different types of cell are to be found in the retina: (1) the small elongated pigment cell with an avoid nucleus, many pigment granulae and short microvilli at the apical end of the cell; (2) the sensory cell type I with a large irregular nucleus, long microvilli, which extend to under the surface of the lens, a large number of light-cored vesicles, 700 A in diameter and the axon; (3) the elongated slender sensory cell type II with many dense cored vesicles, several pigment granulae in the distal region of the cell and short irregular microvilli at the apical end of the cell. This type is few in number. Two results of the study of the embryonic eye are described: the cornea cells differ from those in the adult eye in the nucleus-cytoplasm relation and the optic nerve is smaller than in the adult eye.  相似文献   

16.
Summary The cerebral and epidermal ocelli of the Müller's larva and the cerebral and tentacular eyes of the adult turbellarian Pseudoceros canadensis were studied by electron microscopy. The right cerebral ocellus of the larva consists of one cup-shaped pigmented cell and three sensory cells that bear microvilli. The left cerebral eye of the larva has the above named cells plus a sensory cell with many cilia. Evolutionary significance is attributed to the presence of both ciliary and microvillar photoreceptors in an eye of a flatworm. The one epidermal ocellus of the larva is composed of two cells: a cup-shaped pigmented one bearing flattened cilia, the presumed photoreceptors, and a cell above the cup that adds a few nonciliary lamellae to the stack of ciliary ones from the pigmented cell. The adult eyes contain only microvillar receptors; cilia were not observed.  相似文献   

17.
Summary The compound eye of female (diploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye is emarginate, and externally consists of roughly 70–100 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers. The lens facet overlies a crystalline cone of the acone type which is roughly hourglass-shaped. Pigment cells envelop the entire ommatidium, and pigment granules also are abundant throughout the cytoplasm of the 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells effectively fuse into a rhabdom that extends from the base of the crystalline cone deeply into the ommatidium. Six distal peripheral retinular cells encircle the 2 central cells, and their rhabdomeres join laterally to form a rhabdomeric ring around the central rhabdom. The rhabdom and rhabdomeric ring are effectively separated by the cytoplasm of the two central retinular cells which contains the usual organelles and an abundance of shielding pigment granules. Eight axons per ommatidium gather in a tracheae-less fascicle before exiting the eye through the fenestrate basement membrane. No tracheation was observed among the retinular cells. Each Semper cell of each observed crystalline cone contained an abundance of virus-like particles near the cell nucleus. The insect is laboratory reared, and the visual system seems very amenable to photoreceptor investigations.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N.  相似文献   

18.
P Nemanic 《Tissue & cell》1975,7(3):453-468
The compound eyes of the terrestrial isopod Porcellio scaber comprises about 20 ommatidia. The dioptric apparatus of each ommatidia includes a biconvex corneal lens and a spherical crystalline cone that is secreted by two cone cells. The closed rhabdom is formed by the microvillar extensions of seven pigmented retinula cells and one apical eccentric cell. All retinular axons exit the eye in one bundle. During dark-adaption pigment granules in the retinula cells rapidly withdrew from around the rhabdom and the cell periphery, and migrated basally. Rhabdoms thickened because of movement of the microvilli, and mitochondria moved medially and basally. During light adaption these processes were reversed. Multivesicular bodies became less numerous and rough endoplasmic reticulum and ribosomes proliferated during the initial stages of light adaption.  相似文献   

19.
It is suggested that the dragonfly median ocellus is specifically adapted to detect horizontally extended features rather than merely changes in overall intensity. Evidence is presented from the optics, tapetal reflections and retinal ultrastructure. The underfocused ocelli of adult insects are generally incapable of resolving images. However, in the dragonfly median ocellus the geometry of the lens indicates that some image detail is present at the retina in the vertical dimension. Details in the horizontal dimension are blurred by the strongly astigmatic lens. In the excised eye the image of a point source forms a horizontal streak at the level of the retina. Tapetal reflections from the intact eye show that the field of view is not circular as in most other insects but elliptical with the major axis horizontal, and that resolution in the vertical direction is better than in the horizontal. Measurements of tapetal reflections in locust ocelli confirm their visual fields are wide and circular and their optics strongly underfocused. The ultrastructure suggests adaptation for resolution, sensitivity and a high metabolic rate, with long, widely separated rhabdoms, retinulae cupped by reflecting pigment, abundant tracheoles and mitochondria, and convoluted, amplified retinula cell plasma membranes.  相似文献   

20.
龟纹瓢虫成虫的复眼形态及其显微结构   总被引:3,自引:1,他引:3  
利用光镜、组织切片法观察了龟纹瓢虫Propylaea japonica(Thunberg)成虫的复眼形态及其显微结构。结果如下:(1)头正前方观,复眼外形似半球,且后方稍向内合拢。每个复眼约包括630个小眼。(2)每个小眼是由1套屈光器(1个角膜和1个晶锥)、6至8个小网膜细胞及其特化产生的视杆和基细胞等几部分组成。晶体周围及小网膜色素细胞内均含有丰富的色素颗粒。(3)小眼整体纵切显示,其上、下段色素颗粒分布相对较多,中段分布较少。(4)明、暗适应状态对小眼的色素颗粒分布有影响,性别对其分布无明显影响。明适应状态下,其色素颗粒较均匀地分布于视杆两侧上下,暗适应状态时色素颗粒则主要分布在视杆部位的上侧,显示其具有一定的重叠眼性质;而在相同的明、暗适应状态下其雌、雄成虫复眼的色素颗粒分布间无明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号