首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A large scale synthesis of the tBuSATE pronucleotide of AZT was required for in vivo studies. A comparative synthesis of this derivative by phosphoramidite and monophosphate approaches is reported.  相似文献   

2.
Abstract

Roots of many species are studied because of the presence of high-value bioactive molecules, yet few studies have attempted to determine the biosynthetic pathways of these compounds or the way in which synthesis is regulated. The presence of secondary metabolites in the root does not necessarily mean that this organ is also the site of synthesis. Thus the identification of organ-specific intermediate precursors and key enzymes is important for understanding the biosynthetic pathway and the regulation of bioactive molecules. This knowledge could allow researchers to predict the suitability of in vitro systems, such as regenerated roots and hairy roots, for producing the molecules of interest. In the present review, the production of bioactive molecules in in vivo roots is compared to that in in vitro untransformed and transformed roots, concentrating on recent developments in the study of the biosynthesis of the anti-cancer alkaloid camptothecin in Camptotheca acuminata Decne. The results of a recent study performed in our laboratory on the production of camptothecin and other secondary metabolites in in vivo and in vitro C. acuminata roots are also presented.  相似文献   

3.
Abstract— An amino acid incorporating system from rat brain has been used to study in vitro four aspects of protein synthesis: amino acid-AMP-enzyme complex formation; amino acid-tRNA synthesis; amino acid incorporation into protein and protein synthesis from presynthesized amino acid-tRNA. Ethionine (0.5 mm ) inhibited the system and the inhibition appeared to be in the formation of amino acid-tRNA. The inhibition in vitro was independent of the sex of the animal from which the system was derived. Pretreatment of animals in vivo with ethionine yielded in females only preparations deficient in incorporating capacity when tested in vitro. Exchange experiments demonstrated that the defect was in the pH 5 enzymes and not in the ribosomes. The inhibition in vitro was not reversed by addition of ATP and appeared to be competitive with the amino acid substrate.  相似文献   

4.
Abstract

Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.  相似文献   

5.
《Biomarkers》2013,18(4):232-243
Abstract

Covalent binding of reactive metabolites of pentachloropheno (PCP) was investigated both in vitro andin vivo in the livers of male Sprague-Dawley rats via measurement of protein adducts. Cysteinyl adducts of quinones andsemiquinones in liver cytosolic (Cp) andnuclear (Np) proteins were assayed after catalytic cleavage by Raney nickel. Results from in vitro experiments confirmed that PCP metabolism produced tetrachlorobenzoquinones andthe comsponding tetrachlorobentosemiquinones which subsequently bound to sulphydryl groups in liver proteins. In vivo, the production of cysteinyl adducts increased with the administered dosage (0–40 mg PCP per kg body weight) andpresented evidence of saturable metabolism. Results suggest two metabolic pathways for PCP, including a high-affinity low-capacity pathway anda low-affinity high-capacity pathway. Time-course experiments in vivo andin vitro suggested that quinone adducts partlcipated in multiple substitution reactions with protein and/or non-protein thiols, andpointed to possible formation of protein-protein cross-links in vivo. The elimination rate constants of quinone adducts in vitro were about 0.35 h?1 in liver Cp. The elimination of quinone adducts in vivo appeared to follow biphasic kinetics with rate constants for the terminal phase being 0.014 and0.008 h?1 in liver Cp andNp, respectively.  相似文献   

6.
The aim of this research work was to investigate a series of novel 5,6-diaryl-1,2,4-triazines (3a3q) containing 3-morpholinoethylamine side chain, and to address their antiplatelet activity by in vitro, ex vivo and in vivo methods. All compounds were synthesized by environment benign route and their structures were unambiguously confirmed by spectral data. Compounds (3l) and (3m) were confirmed by their single crystal X-ray structures. Out of all the synthesized compounds, 10 were found to be more potent in vitro than aspirin; six of them were found to be prominent in ex vivo assays and one compound (3d) was found to have the most promising antithrombotic profile in vivo. Moreover, compound (3d) demonstrated less ulcerogenicity in rats as compared to aspirin. The selectivity of the most promising compound (3d) for COX-1 and COX-2 enzymes was determined with the help of molecular docking studies and the results were correlated with the biological activity.  相似文献   

7.
The translational system was isolated from the gills of the Antarctic scallop Adamussium colbecki (Smith) and the European scallop Aequipecten opercularis (Linnaeus) for in vitro protein synthesis capacities (g protein mg FW–1 day–1) and the translational capacities of RNA (kRNA in vitro mg protein mg RNA–1 day–1). In vitro protein synthesis capacity in the cold-adapted pectinid at 0 °C was similar to the one found in the temperate scallop at 25 °C. These findings might reflect cold compensated rates in Adamussium colbecki, partly explainable by high tissue levels of RNA. Cold-compensated in vitro protein synthesis capacities may further result from increments in the translational capacity of RNA. The thermal sensitivity of the translation machinery was slightly different in the two species, with significantly lower levels of Arrhenius activation energies Ea and Q10 in Adamussium colbecki in the temperature range 0–15 °C. Reduced protein synthesis and translational capacities were found in vitro in gills of long-term aquarium-maintained Adamussium colbecki and were accounted for by a loss of protein synthesis machinery, i.e. a reduction in RNA levels, as well as a decrease in the amount of protein synthesized per milligram of RNA (RNA translational capacity, kRNA in vitro). Such changes may involve food uptake or mirror metabolic depression strategies, like those occurring during winter. Consequences of high in vitro RNA translational capacities found in the permanently cold-adapted species are discussed in the context of seasonal food availability and growth rates at high latitudes.Abbreviations DPM disintegrations per minute - DTT dithiothreitol - Ea Arrhenius activation energy - ks fractional protein synthesis rate - kRNA in vivo translational efficiency - kRNA in vitro translational capacity - PCA perchloric acid - Phe phenylalanine - PLA phospho-L-arginine - PSU practical salinity units - RNAse ribonuclease - TCA trichloroacetic acidCommunicated by G. Heldmaier  相似文献   

8.
In a new group of 3-methyl-2-phenyl-1-substituted-indole derivatives (10af), the indomethacin analogs were prepared via the Fisher indole synthesis reaction of propiophenone with appropriately substituted phenylhydrazine hydrochloride. This is followed by the insertion of the appropriate benzyl or benzoyl fragment. All the synthesized compounds were evaluated for their anti-inflammatory (in vitro and in vivo) and analgesic activities. The methanesulphonyl derivatives 10d, e and f showed the highest anti-inflammatory (in vitro and in vivo) and analgesic activities. In addition, molecular docking studies were performed on compounds 10af and the results were in agreement with that obtained from the in vitro COX inhibition assays. The significant anti-inflammatory and analgesic activities exhibited by 10d and 10e warrant continued preclinical development as potential anti-inflammatory and analgesic agents.  相似文献   

9.
To obtain data on the biochemical effects of edeine in the fungus Neurospora crassa, in vivo protein synthesis, in vitro protein synthesis, as well as in vivo RNA and DNA synthesis of the wildtype and an edeine resistant mutant were measured.—Incorporation of 3H leucine into conidia of both strains, which served as a measure for in vivo protein synthesis, was inhibited by 200 g edeine/ml as follows: Wildtype approx. 40%, mutant approx. 6%.—Incorporation of 14C phenylalanine into polyphenylalanine in a cell free system with ribosomes from either the wildtype or the mutant, was inhibited between 74 and 95% by edeine at a ratio of 2 molecules edeine per ribosome.—Incorporation of 3H adenosine into conidia, serving as a measure for in vivo RNA synthesis, was inhibited in the wild-type (approx. 30% inhibition by 200 g edeine/ml). It was, however, not influenced in the ed r mutant. Similarly, in vivo DNA synthesis was decreased in the wildtype, but not in the mutant.—These results suggest that edeine acts at more than one site. The resistance of the mutant ed r -29 (ed r -2 locus) is tentatively interpreted as due to a block in edeine uptake.  相似文献   

10.
Abstract

β-Difluoromethyl-β-alanine (3-amino-4,4-difluorobutanoic acid) is a potent in vitro and in vivo inhibitor of GABA-T. The rate of inhibition of GABA-T is concentration- and time-dependent. The inactivation is active-site directed. No reactive species escapes from the active site before reacting with the enzyme. The inhibition is irreversible and stereospecific. The use of β-2H-β-difluoromethyl-β-alanine results in a marked primary isotope effect in vitro and in vivo. The use of differently substituted dihalogeno derivatives of β-alanine suggests that the rate of inhibition is dependent on the nature and position of the leaving group. The mechanism of inhibition is discussed on the basis of spectral changes.  相似文献   

11.
Abstract

NAD (nicotinamide adenine dinucleotide) synthase catalyses the biochemical synthesis of NAD, from nicotinic acid adenine dinucleotide (NAAD). NAD may be synthesized through the de novo pathways and/or the salvage pathways in cells. However, in Leishmania parasite, the synthesis of NAD solely depends on the salvage pathways. NAD synthetase is widely explored as a drug target in various microorganisms. In Bacillus anthracis, a group of sulphonamides 5599, 5617 and 5824 and complex amide 5833 were reported to have activity at micromolar range against NAD synthetase. Hence, in the present study, the same group of sulphonamides and complex amide were validated through in silico and in vitro studies for its efficiency towards Leishmania donovani NAD synthase. In silico study revealed the ligands 5824 and 5833 to have better docking score. Molecular dynamics simulation for a duration of 50 ns of all the ligand–protein complexes suggested that the complexes with the ligands 5824 and 5833 were stable and interacting. In vitro and ex vivo studies have shown that 5824 and 5833 inhibit the cell viability of the organism at a lower concentration than 5599 and 5617. Hence, with further in vivo validation, 5824 (or its synthetic analogues) and 5833 could be the choice that may work synergistically with other potential drugs in treating drug-resistant cases of leishmaniasis.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
The multiple copies of the chloroplast genome (plastome) are condensed and organized into nucleoids by a set of proteins. One of these, the DNA-binding protein DCP68 from soybean, has previously been shown to compact DNA and to inhibit DNA synthesis in vitro. N-terminal amino acid analysis and the absorption spectrum of the purified protein suggest that DCP68 is the siroheme protein sulfite reductase, a ferredoxin-dependent enzyme that participates in sulfur assimilation for cysteine and methionine biosynthesis. The in vivoassociation of this protein with chloroplast nucleoids was confirmed by immuno-colocalization with antibodies against sulfite reductase from Arabidopsis thaliana. These results suggest that DCP68 is a bifunctional chloroplast protein that participates in reductive sulfur assimilation and plays a role in organellar nucleoid organization. The fact that dephosphorylation by alkaline phosphatase affects the binding of purified DCP68 to DNA in vitro might be indicative of the way the interaction of the protein with the nucleoid is regulated in vivo.  相似文献   

13.
[目的] 探讨中药单体黄芩苷对嗜水气单胞菌在体内外生长及生物膜形成的影响。[方法] 体外实验中,利用牛津杯法检测抑菌圈直径,结晶紫法检测生物膜的形成,通过泳动实验检测黄芩苷对嗜水气单胞菌运动性的影响,紫外吸收法检测细胞膜完整性,用透射电镜技术观察黄芩苷对细菌形态的影响。体内实验利用草鱼为对象检测黄芩苷对嗜水气单胞菌增殖的影响。[结果] 黄芩苷在体外对嗜水气单胞菌有明显的抑菌效果,通过对生物膜的研究发现黄芩苷对生物膜形成具有抑制作用,并同时抑制其运动性。同时黄芩苷可以破坏细胞结构,并增加了细胞膜通透性。体内实验结果显示黄芩苷对嗜水气单胞菌具有清除作用,且具有一定的浓度依赖性。[结论] 黄芩苷在体内外均具有抑制嗜水气单胞菌增殖的作用,有望在水产养殖病害防治工作中得到应用。  相似文献   

14.
The present study describes the synthesis of a series of new 4-aminoquinoline-derived thiazolidines and evaluation of their antimalarial activity against a NF-54 strain of Plasmodium falciparum in vitro and N-67 strain of Plasmodium yoelii in vivo. Among the series, two compounds, 2-(4-chloro-phenyl)-thiazolidine-4-carboxylic acid [2-(7-chloro-quinolin-4-ylamino)-ethyl]-amide hydrochloride (14) and 2-(2,6-dichloro-phenyl)-thiazolidine-4-carboxylic acid [2-(7-chloro-quinolin-4-ylamino)-ethyl]-amide hydrochloride (22) exhibited significant suppression of parasitaemia in the in vivo assay. All the analogues were found to form strong complex with haematin and inhibited the β-haematin formation in vitro. These results suggest that these compounds act on heme polymerization target.  相似文献   

15.
16.
Myelin membrane synthesis was studied using mechanically dissociated fetal rodent CNS which formed spherical reaggregates while being maintained in rotating culture flasks. These reaggregate cultures exhibited myelinogenesis in vitro after precisely the same period of time needed for myelin synthesis to commence in vivo. The myelin membrane related enzymes, 2′,3′ cyclic nucleotide phosphohydrolase (CNP) and cerebroside sulfotransferase (CST), appear similar in their specific activities and follow the same developmental patterns that these enzymes exhibit in vivo. In addition, phosphorylation of myelin basic protein occurs by the third week in vitro which agrees with previously published in vivo studies. These experiments indicate that this nerve-cell culture system may be an appropriate model for studying the biological regulation of myelinogenesis as well as a variety of other nervous-system functions.  相似文献   

17.
PROTEIN SYNTHESIS IN NORMAL AND SCRAPIE MOUSE BRAIN   总被引:1,自引:0,他引:1  
Damage to the brain as a result of an intracerebral injection of physiological saline does not appreciably affect the rate of protein synthesis in mouse brain. The in vivo and in vitro incorporation of labelled amino acids into mitochondria and their in vivo incorporation into nuclei, microsomes, nerve ending particles, myelin and cell sap were compared in normal and scrapie-affected mice. No significant differences were found.  相似文献   

18.
【目的】本研究旨在构建单核细胞增多性李斯特菌(Listeria monocytogenes)硫氧还蛋白Lmo1609的基因缺失株,分析Lmo1609的氧化还原酶学活性,及其在细菌生长、运动过程中发挥的作用,并探究了Lmo1609参与细菌抗氧化应激和致病的生物学基础。为阐明其抗应激生物学作用以及完善李斯特菌的感染机制奠定分子基础。【方法】利用同源重组原理构建lmo1609基因缺失株及回补株。通过分子生物学、应激生物学和感染生物学等手段,对Lmo1609的生物学功能进行探索。以胰岛素为底物分析其氧化还原酶学活性;通过构建lmo1609缺失株和回补株,比较野生株和突变株在运动性、生长能力、抗氧化应激、细胞黏附、侵袭和增殖能力等方面的差异,进而鉴定Lmo1609的生物学功能。【结果】缺失lmo1609后,单增李斯特菌在生长能力上无明显变化,而运动能力明显减弱;对H2O2的敏感性增强;对细胞的黏附侵袭能力没有差异;对小鼠的致病力没有显著影响。【结论】本研究首次证实了单增李斯特菌硫氧还蛋白Lmo1609具有还原酶学活性,参与调控细菌的运动和对H2O2的氧化应激耐受,不介导单增李斯特菌的致病性。  相似文献   

19.
ABSTRACT

When trophoblasts migrate and invade in vivo, they do so by interacting with a range of other cell types, extracellular matrix proteins, chemotactic factors and physical forces such as fluid shear stress. These factors combine to influence overall trophoblast migration and invasion into the decidua, which in turn determines the success of spiral artery remodelling, and pregnancy itself. Our understanding of these important but complex processes is limited by the simplified conditions in which we often study cell migration in vitro, and many discrepancies are observed between different in vitro models in the literature. On top of these experimental considerations, the migration of individual trophoblasts can vary widely. While time-lapse microscopy provides a wealth of information on trophoblast migration, manual tracking of individual cell migration is a time consuming task that ultimately restricts the numbers of cells quantified, and thus the ability to extract meaningful information from the data. However, the development of automated imaging algorithms is likely to aid our ability to accurately interpret trophoblast migration in vitro, and better allow us to relate these observations to in vivo scenarios. This commentary discusses the advantages and disadvantages of techniques commonly used to quantify trophoblast migration and invasion, both from a cell biology and a mathematical perspective, and examines how such techniques could be improved to help us relate trophoblast migration more accurately to in vivo function in the future.  相似文献   

20.
The insertion and folding of proteins in biological membranes during protein synthesis in vivo is fundamental to membrane biogenesis. At present, however, certain molecular aspects of this process can only be understood by complementary studies in vitro. We bring together in vitro and in vivo results, highlighting how the studies inform each other and increase our knowledge of the folding and assembly of polytopic membrane proteins. A notable recent advance is the high-resolution crystal structure of the protein machinery responsible for membrane protein insertion into the endoplasmic reticulum. This provides an opportunity to combine in vitro and in vivo studies at a more sophisticated level and address mechanistic aspects of polytopic protein insertion and folding. Quality control is another important aspect of membrane biogenesis, and we give an overview of the current understanding of this process, focusing on cystic fibrosis as a well-studied paradigm. Mutations in the associated membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), can cause the quality control mechanisms to prevent the mutant protein reaching its normal site of action, the cell surface. In vitro studies of CFTR shed light on the possible origins of other clinically relevant folding mutants and highlight the potential synergy between in vitro and in vivo approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号