首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

2.
This investigation describes the cytology of the ulotrichalean genera Ulothrix and Stigeoclonium. Cellular organization is similar to the degree that interphase cells of the 2 genera cannot be distinguished with certainly. In Stigeoclonium, the nuclear envelope becomes disrupted at the end of prophase, and centrioles enter the nucleoplasm. At metaphase the nuclear envelope is again intact, and some of the spindle tubules appear to be contiguous with the nuclear envelope. The spindle in Ulothrix is essentially open with, no attachment of spindle tubules to the nuclear envelope and with, centrioles on the spindle-cytoplasm interface at the spindle poles. Spindle poles are blunt in Stigeoclonium and pointed in Ulothrix. Cytokinesis is by cell plate formation in both genera, but there is no phragmoplast.  相似文献   

3.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   

4.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

5.
Electron microscopy of glutaraldehyde-osmium-fixed samples of haploid myxamoebae and diploid plasmodia of the myxomycete Physarum flavicomum Berk. reveal dissimilar spindle apparatus during mitosis in the two cell types. Myxamoebae exhibit an astral type of mitosis with centrioles at the poles and nuclear envelope breakdown during prophase. Plasmodial nuclei lack centrioles at mitosis and have an intranuclear spindle, with nuclear envelope persisting during the entire division. Coated vesicles are noted during prophase and telophase in myxamoebae and their role in spindle formation and dispersion is suggested.  相似文献   

6.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

7.
Electron microscopic examination of thin sections showed that the blepharoplast of a young spermatid of Phaeoceros consists of two side-by-side centrioles and an accumulation of osmiophilic, granular matrix at their proximal ends. Lying between these nearly parallel organelles is a dark-staining body that will later disappear at the onset of flagellogenesis. For a brief period the centrioles are oriented perpendicular to the nuclear surface so that the granular matrix at their proximal ends is confluent with the nuclear envelope; furthermore, the nucleoplasm immediately in front of the centrioles becomes densely staining. The multilayered structure (MLS) develops directly under the centrioles. It comprises a band of 12 microtubules (the S1 stratum) and three lower strata (S2–4) whose constitutent lamellae are oriented at an oblique angle to the S1 axis. While the S1 tubules grow rearward over the nucleus which forms a beak adjacent to the posterior end of the lamellar strata, the centrioles are transformed into basal bodies with the distal growth of the axonemes and the proximal growth of the central cartwheels and lowermost triplets. The proximal ends of the basal bodies and the S1 tubules overlying the lamellar strata are invested with osmiophilic matrix that extends down to the S2 layer and may temporarily occlude the lamellar plates. At the onset of nuclear elongation an anterior mitochondrion becomes situated close beneath the lamellar strata which extend laterally beyond the S1 tubules.  相似文献   

8.
Summary Mitosis in the plasmodium ofEchinostelium minutum is intranuclear (closed spindle) and centrioles are not present at the spindle poles. The nuclear envelope remains essentially intact throughout mitosis with polar fenestrae appearing in anaphase and persisting through telophase. During anaphase there is a shortening in the distance of the chromosomes to the poles followed by a further separation of the poles. Zippering of microtubules may be the basis for these two anaphasic movements. During telophase the polar MTOCs are extruded into the cytoplasm through the polar fenestrae prior to reconstitution of the nuclear envelope. It is proposed that during sporulation such MTOCs are responsible for the differentiation of the centrioles which subsequently persist in the myxamoebal phase of this species.Based on the doctoral dissertation of the first author presented to the Department of Botany, University of Washington, Seattle, WA 98195, U.S.A.  相似文献   

9.
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.  相似文献   

10.
Syndinium and related organisms which parasitize a number of invertebrates have been classified with dinoflagellates on the basis of the morphology of their zoospores. We demonstrate here that with respect to chromosome structure and chemistry as well as nuclear division, they differ fundamentally from free-living dinoflagellates. Alkaline fast green staining indicates the presence of basic proteins in Syndinium chromosomes. Chromatin fibers are about 30 Å thick and do not show the arrangement characteristic of dinoflagellate chromosomes. The four V-shaped chromosomes are permanently attached at their apexes to a specific area of the nuclear membrane through a kinetochore-like trilaminar disk inserted into an opening of the membrane. Microtubules connect the outer dense layer of each kinetochore to the bases of the two centrioles located in a pocket-shaped invagination of the nuclear envelope. During division kinetochores duplicate, and each sister kinetochore becomes attached to a different centriole. As the centrioles move apart, apparently pushed by a bundle of elongating microtubules (central spindle), the daughter chromosomes are passively pulled apart. During the process of elongation of the central spindle, the cytoplasmic groove on the nuclear surface which contains the central spindle sinks into the nuclear space and is transformed into a cylindrical cytoplasmic channel. A constriction in the persisting nuclear envelope leads to the formation of two daughter nuclei.  相似文献   

11.
Frans A. C. Kouwets 《Protoplasma》1996,191(3-4):191-204
Summary The ultrastructure of mitosis and cytokinesis is studied in the typical and a multicentriolar form of the multinucleate green algaBracteacoccus minor (Chodat) Petrovà. These processes are essentially identical in both forms, and are similar to those in other uni- and multinucleate chlorellalean algae. The mitotic spindle is closed and centric, and a fragmentary perinuclear envelope is present. In multinuclear cells mitosis is synchronous and may occur at the same time as cytokinesis. Cleavage is simultaneous and centrifugal, starting near the nucleus-associated centrioles and apparently mediated by phycoplast microtubules of the trochoplast type. Flagellated wall-less spores are usually formed. In the typical form ofB. minor, each interphase nucleus is associated with two mature centrioles (= one set) which function as centrosomal markers. At the onset of mitosis these centrioles duplicate and segregate and eventually establish the two poles of the spindle, where polar fenestrae develop in the nuclear envelope. In the multicentriolar form, however, each interphase nucleus generally is associated with two or three sets of centrioles. Consequently, during mitosis each half-spindle is associated with two or three sets. These centrioles are not necessarily all associated with the fenestrae at the spindle poles, but one or more sets are frequently associated with the nuclear membrane, more or less remote from the nuclear poles. However, the spindle in this multicentriolar form remains essentially bipolar. Cleavage generally results in zoospores with two, four or six flagella. The behaviour of the extra centrioles during the cell cycle and their possible relationship with centrosomes are discussed.  相似文献   

12.
Vegetative nuclear divisions in cystosoral Plasmodia from the shoot system of Sorosphaera veronicae Schroeter were studied with standard transmission electron microscopy. Each metaphase nucleus forms a cruciform configuration as the persistent nucleolus elongates perpendicularly to chromatin aligned on the equatorial plate. The nuclear envelope remains intact during metaphase and anaphase. Each spindle pole consists of a fenestrated nuclear envelope with an exteriorly situated centriole and closely associated endoplasmic reticulum. Intranuclear membranous vesicles occur within metaphase and anaphase nuclei and are closely associated with chromatin and nuclear envelope. Microtubules pass from centrioles into the nucleus and are also attached to chromatin at kinetochores.  相似文献   

13.
The ultrastructure of spermatozoa of Cucumaria japonica and a congeneric morphologically similar deep-sea species was studied. The spermatozoa of both C. japonica and C. conicospermium are similar to those of other holothurians: the acrosome is composed of an acrosomal granule and periacrosomal material; the centrioles lie at an acute angle to one another; and the proximal centriole is connected to the nuclear envelope by a flagellar rootlet. The spermatozoa of C. japonica differ from those of C. conicospermium in the shape of the head and the dimensions and position of the acrosome. In C. japonica, the acrosome is completely embedded in the nuclear fossa and measures 0.7 m. In C. conicospermium, only one-third of the acrosome is embedded in the nuclear fossa; this acrosome measures 1.3 m. A correlation between the structure of the sperm acrosome and that of the egg envelope is discussed.  相似文献   

14.
SYNOPSIS. Zoosporulation in Labyrinthula sp. in monoxenic culture was initiated by aggregation of spindle cells into reticulate sori. The spindle cells then changed into rounded or oval cells and formed, de novo, 2 pairs of centrioles at opposite sides of each nucleus. A pair of granular aggregates (protocentrioles) ~ 240 mμ in diameter served as precursor bodies during centriole formation. Spindle microtubules around the prophase nucleus connected the pairs of centrioles but were not found in the nucleoplasm until nuclear envelope fragmentation occurred. Prophase nuclei of uninucleated sporangia contained synaptinemal complexes; therefore, meiosis is presumed to occur. The envelope fragments moved toward the centrioles and regrouped to form the nuclear membranes of the daughter cells. Alternating nuclear and cytoplasmic divisions subdivided the preparation into 8 cells which differentiated into laterally biflagellated zoospores. Flagellar development involved growth of the kinetosome microtubules into a bud which formed over the kinetosome tangential to the cell surface. Kinetosomes were derived directly from centrioles with little differentiation other than addition of an electron-dense core to the lumen of the centriole. Zoospore ultrastructure included a stigma comprised of a row of electron-dense granules located slightly under the plasmalemma and posterior to the pair of kinetosomes. A single row of 17–21 microtubules lay parallel to the stigma granules, one or more being connected to the anterior kinetosome. A striated fiber apparatus similar to that found in some phytoflagellates connected the midregions of the kinetosomes. Fibers 1.0–1.2 μ long were attached to the plasmalemma around the base of the anterior flagellum. Zoospores settled on the substrate and differentiated directly into spindle cells. Since synaptinemal complexes were observed the planonts are probably haploid zoospores and probably not gametes since planogametic copulation was not observed.  相似文献   

15.
Eggs of the sea urchin Arbacia punctulata were artificially activated with hypertonic seawater. The artificially activated eggs undergo the cortical reaction which is not distinguished by a wavelike progression as in the case of inseminated eggs. The cortical granules are released at random loci at the surface of the egg and result in spaces separated by large cytoplasmic projections. Unreacted cortical granules and ribosomes are found within the matrix comprising the large cytoplasmic projections. No "fertilization cone" is formed. The subsequent release of additional cortical granules results in the formation of a continuous perivitelline space, 15 min following activation. 85 min postactivation, an organization of annulate lamellae, endoplasmic reticulum of the smooth variety, and microtubules around a centriole is observed prior to nuclear division. Before the breakdown of the nuclear envelope a streak stage is formed. The streak is composed of a central core of annulate lamellae and is encompassed by endoplasmic reticulum and vesicular components. Condensation of chromatin is followed by the establishment of the mitotic apparatus. Centrioles were not found in the mature egg; however, they are present after activation prior to the first nuclear division, in the four-cell embryo, multicellular embryo, and at blastula. Artificially activated eggs have been observed to develop to the pluteus stage in more than 50% of the eggs treated.  相似文献   

16.
Vegetative nuclei of fungi Ceratocystis fagacearum and Fusarium oxysporum were studied both in the living condition with phase-contrast microscopy and after fixation and staining by HCl-Giemsa, aceto-orcein, and acid fuchsin techniques. Nucleoli, chromosomes, centrioles, spindles, and nuclear envelopes were seen in living hyphae of both fungi. The entire division process occurred within an intact nuclear envelope. Spindles were produced between separating daughter centrioles. At metaphase the chromosomes became attached to the spindle at different points. In F. oxysporum the metaphase chromosomes were clear enough to allow counts to be made, and longitudinal splitting of the chromosomes into chromatids was observed. Anaphase was characterized in both fungi by separation of chromosomes to poles established by the centrioles, and in F. oxysporum anaphase separation of chromosomes was observed in vivo. Continued elongation of the spindles further separated the daughter nuclei. Maturing daughter nuclei of both fungi were quite motile; and in C. fagacearum the centriole preceded the bulk of the nucleus during migration. The above observations on living cells were corroborated by observations on fixed and stained material.  相似文献   

17.
Summary Mitotic divisions during sporangiogenous plasmodial cleavage inWoronina pythii were studied with transmission electron microscopy. We conclude that these nuclear divisions (e.g., transitional nuclear division, and sporangial mitoses) share basic similarities with the cruciform nuclear divisions inW. pythii and other plasmo-diophoraceous taxa. The major distinction appeared to be the absence of nucleoli during sporangial mitosis and the presence of nucleoli during cruciform nuclear division. The similarities were especially evident with regard to nuclear envelope breakdown and reformation. The mitotic divisions during formation of sporangia were centric, and closed with polar fenestrae, and characterized by the formation of intranuclear membranous vesicles. During metaphase, anaphase, and telophase, these vesicles appeard to bleb from the inner membrane of the original nuclear envelope and appeared to coalesce on the surface of the separating chromatin masses. By late telophase, the formation of new daughter nuclear envelopes was complete, and original nuclear envelope was fragmented. New observation pertinent to the mechanisms of mitosis in thePlasmodiophoromycetes include a evidence for the incorporation of membrane fragments of the original nuclear envelope into new daughter nuclear envelopes, and b the change in orientation of paired centrioles during sporangial mitosis.  相似文献   

18.
Naegleria gruberi is an amoeboflagellate found in soil; mitosis is restricted to the amoeboid phase of its life-cycle. Ultrastructural examination of mitotic stages has confirmed some aspects of karyokinesis reported in earlier light-microscopic studies and expanded on other features of nuclear division described in electron-microscopic studies of Naegleria The nuclear envelope remained intact throughout division, the nucleolus persisted, and centrioles were not found Chromosomes were indistinguishable at the ultrastructural level, nor was any evidence detected of sites of microtubular attachment to possible chromosomes. An interzonal body, formed during separation in two of the nucleolus, was not an invariable feature of mitosis. The same was true of the polar caps, which appeared to be little more than the ends of the mitotic spindle. It is suggested that, in line with comparable situations in other protists, expansion of the nuclear envelope is chiefly responsible for separation of the nucleus into two daughter nuclei.  相似文献   

19.
The mitotic, micronuclear division of the heterotrichous genus Blepharisma has been studied by electron microscopy. Dividing ciliates were selected from clone-derived mass cultures and fixed for electron microscopy by exposure to the vapor of 2% osmium tetroxide; individual Blepharisma were encapsulated and sectioned. Distinctive features of the mitosis are the presence of an intact nuclear envelope during the entire process and the absence of centrioles at the polar ends of the micronuclear figures. Spindle microtubules (SMT) first appear in advance of chromosome alignment, become more numerous and precisely aligned by metaphase, lengthen greatly in anaphase, and persist through telophase. Distinct chromosomal and continuous SMT are present. At telophase, daughter nuclei are separated by a spindle elongation of more than 40 µ, and a new nuclear envelope is formed in close apposition to the chromatin mass of each daughter nucleus and excludes the great amount of spindle material formed during division. The original nuclear envelope which has remained structurally intact then becomes discontinuous and releases the newly formed nucleus into the cytoplasm. The micronuclear envelope seems to lack the conspicuous pores that are typical of nuclear envelopes. The morphology, size, formation, and function of SMT and the nature of micronuclear division are discussed.  相似文献   

20.
Motomura  T. 《Protoplasma》1994,178(3-4):97-110
Summary Processes of fertilization and zygote development inFucus distichus were studied by indirect immunofluorescence microscopy using anti- tubulin antibody and electron microscopy. Just after plasmogamy, sperm aster formation occurs during migration of a sperm nucleus toward an egg nucleus at the center of cytoplasm. Only sparse microtubules (MTs) exist around the egg nucleus. The sperm aster can be observed till karyogamy, but afterwards vanishes. Accompanying sperm aster formation, cortical MTs which are reticulately arranged develop further in the zygotes. In 4 h-old zygotes, characteristic structures which are composed of fine granular masses and consist of intermixed dense and lighter staining areas appear around the nucleus. These structures cannot be detected with anti- tubulin immunofluorescence microscopy. The two centrioles derived from the sperm separate and migrate to both poles. In 4 h-and 8 h-old zygotes, there are no defined MT foci around the zygote nucleus and MTs radiate from the circumference of it. In 12 h-old zygotes, each centriole has migrated to the poles and derivative centrioles are generated. The fine granular masses also migrate to both poles and finally disappear accompanying the appearance of numerous MTs radiating from the poles. Therefore, two distinct MT foci appear from 12 h onwards. Progressive stages of nuclear division were also examined with electron and immunofluorescence microscopy in 16 h-old zygotes. The sperm chloroplast with an eyespot and the sperm mitochondria with an intercristal tubular structure, which are distinctive from those of egg, can be detected after plasmogamy and karyogamy. The sperm chloroplast is still present in 16 h-old zygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号