首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shang H  Luo YB  Bai WN 《Molecular ecology》2012,21(15):3869-3878
Populations of Acer species often contain more than three sex phenotypes with complex sexual polymorphism including duodichogamy, protandry and protogyny. We identified the mechanisms that maintain sexual polymorphism in Acer pictum subsp. mono, a temperate tree from northern China, by investigating maternal mating patterns and male reproductive success. We used paternity analyses to estimate rates of outcrossing and disassortative mating, as well as male outcrossed siring success, in a population of A. pictum subsp. mono with uneven sex phenotype ratios (duodichogamous 69.1%, protandrous 19.6%, protogynous 11.3%). We used a pollen‐transfer model to investigate whether the unequal ratios of sex phenotypes could be explained by the observed patterns of mating. Most progeny resulted from outcrossing, particularly disassortative among the sex phenotypes. Although the duodichogamous phenotype showed a significant amount of intraphenotypic mating, the frequency did not exceed that of disassortative mating. We detected no significant differences in male outcrossed siring success among the sex phenotypes. The pollen‐transfer model demonstrated that sex phenotype ratios could be maintained by the observed mating pattern in the population. Our results indicate that disassortative mating among the sex phenotypes can maintain sexual polymorphism in A. pictum subsp. mono and that ratios biased towards duodichogamy can result from frequent intraphenotypic mating in this phenotype.  相似文献   

2.
Front Cover     
In most animals, competition for mating opportunities is higher among males, whereas females are more likely to provide parental care. In few species, though, these "conventional" sex roles are reversed such that females compete more strongly for matings and males provide most or all parental care. This "reversal" in sex roles is often combined with classical polyandry—a mating system in which a female forms a harem with several males. Here, we review the major hypotheses relating such role reversals to evolutionary and behavioural traits (anisogamy, phylogenetic history, sexy males, parental care, genetic paternity, trade‐off between mating and parenting, adult sex ratio) and to ecological factors (food supply, offspring predation). We evaluate each hypothesis in relation to coucals (Centropodinae), a group of nesting cuckoos of great interest for mating system and parental care theory. The black coucal (Centropus grillii) is the only known bird combining classical polyandry with altricial development of young, a costly trait with regard to parental care. Our long‐term study offers a unique possibility to compare the strongly polyandrous black coucal with a monogamous close relative breeding in the same area and habitat, the white‐browed coucal (C. superciliosus). We show that the evolution of sex roles in coucals and other animals has many different facets. Whereas phylogenetic constraints are important, confidence in genetic paternity is not. In combination with facilitating ecological conditions, adult sex ratios are key to understanding sex roles in coucals, shorebirds, and most likely also other animals. We plead for more studies including experimental tests to understand how biased adult sex ratios emerge and whether they drive sexual selection or vice versa. How do sex ratios and sexual selection interact and feedback on each other? Answers to these questions will be fundamental for understanding the evolution of sex roles in mating and parenting in coucals and other species.  相似文献   

3.
Seahorses (Hippocampus spp.) are non-sex-role-reversed members of the Syngnathidae family that provide extensive brood care. Previous studies of seahorses have revealed monogamy within a single brood, but their longer term mating system had not been comprehensively evaluated. The parental contribution to 29 wild-born broods of Hippocampus guttulatus, sampled from six Portuguese populations with differing seahorse densities and sex ratios, was assessed using microsatellite DNA markers. To assess the longer term genetic mating system of this species parentage was determined in eleven broods sampled from a captive population over two breeding seasons. Genetic data suggest that this socially polygamous seahorse is serially monogamous across breeding seasons, i.e. monogamous within a season but may switch mates between seasons, and that differing population densities and sex ratios do not affect the mating system.  相似文献   

4.
The sex ratio behavior of parasitoid wasps in the genus Melittobia is scandalous. In contrast to the prediction of Hamilton's local mate competition theory, and the behavior of numerous other species, their extremely female‐biased sex ratios (1–5% males) change little in response to the number of females that lay eggs on a patch. We examined the mating structure and fitness consequences of adjusting the sex ratio in M. australica and found that (1) the rate of inbreeding did not differ from that expected with random mating within each patch; (2) the fitness of females that produced less female‐biased sex ratios (10 or 20% males) was greater than that of females who produced the sex ratio normally observed in M. australica. These results suggest that neither assortative mating nor asymmetrical competition between males can explain the extreme sex ratios. More generally, the finding that the sex ratios produced by females led to a decrease in their fitness suggests that the existing theory fails to capture a key aspect of the natural history of Melittobia, and emphasizes the importance of examining the fitness consequences of different sex ratio strategies, not only whether observed sex ratios correlate with theoretical predictions.  相似文献   

5.
陈博  文乐雷  赵菊鹏  梁宏合  陈建  焦晓国 《生态学报》2017,37(11):3932-3938
越来越多的研究发现,雄性产生精子(精液)也需付出代价。雄性除了依据配偶质量和竞争对手的竞争强度适应性调整生殖投入外,雄性在求偶和交配行为上也相应产生适应性反应,求偶和交配行为具有可塑性。目前雄性求偶和交配行为可塑性研究主要集中于雌性多次交配的类群中,在雌性单次交配的类群中研究甚少。以雌蛛一生只交配一次而雄蛛可多次交配的星豹蛛为研究对象,比较:(1)前一雄性拖丝上信息物质对后续雄蛛求偶和交配行为的影响,(2)雌雄不同性比对雄蛛求偶和交配行为的影响。研究结果表明,星豹蛛前一雄蛛拖丝上的信息物质对后续雄蛛求偶潜伏期、求偶持续时间和交配持续时间都没有显著影响,但前一雄蛛拖丝上的信息物质对后续雄蛛求偶强度有显著抑制作用。同时,性比对星豹蛛雄蛛求偶和交配行为都没有显著影响。可见,星豹蛛雄蛛对同种雄性拖丝上的化学信息可产生求偶行为的适应性调整,而对性比不产生适应性反应。  相似文献   

6.
Field and laboratory studies revealed that the mating system of a tephritid fly, Procecidochares sp., meets even the most stringent definition of lekking behavior. Mark-recapture and plant-preference experiments confirmed that newly emerged adult Procecidochares sp. left their larval host plant (Chrysothamnus nauseosus) and flew to Atriplex canescens. The flies used A. canescens solely as a mate encounter site. Sex ratios of emerging flies did not differ from unity, but sex ratios at the leks were extremely male-biased. An advantage for larger individuals in male-male aggressive encounters was quantified and observations suggested that females might be choosing mates based on outcomes of fights. Lekking behavior, previously reported among polyphagic tephritids, is considered exceptional for a monophagous species. Factors favoring a lek mating system in this species are discussed.  相似文献   

7.
Mixed populations of the twospotted spider mite (TSM),Tetranychus urticae (Koch), and the Banks grass mite (BGM),Oligonychus pratensis (Banks), occur on corn and sorghum plants in late summer in the Great Plains. Interspecific matings between these arrhenotokous species occur readily in the laboratory but yield no female offspring. The effect of interspecific mating on female: male sex ratios was measured by examining the F1 progeny of females that mated with both heterospecific and conspecific males in no-choice situations. TSM females that mated first with BGM males and then with TSM males produced a smaller percentage of female offspring than TSM females that mated only with TSM males (43.1±5.8 and 78.9±2.8% females, respectively). Similarly, BGM females mated with heterospecific males and then with conspecific males produced fewer female offspring than females mated only with BGM males (55.7±5.2 and 77.5±2.5%, respectively). Lower female: male sex ratios were produced also by BGM females that mated with TSM males after first mating with conspecifics (62.4±3.4%). In mixed populations containing males of both species, females also produced lower female: male sex ratios, but these ratios were not as low as expected based on mating propensities and progeny sex ratios observed in no-choice tests. These data suggest that interspecific mating may substantially reduce female fitness in both mite species by reducing the output of female offspring, but in mixed populations this effect is mitigated by unidentified behavioral mechanisms.  相似文献   

8.
In some populations of the butterflies Acraea encedon and A. encedana, most females are infected with a bacterium that kills their sons. The resulting shortage of males is associated with females adopting a sex‐role‐reversed mating system, in which females swarm at landmarks such as hilltops and compete for males. We have observed the mating behaviour of Acraea species that are not known to be infected with the male‐killer. In over half of these species, males were found to aggregate on hilltops. It is likely that this behaviour was ancestral to the sex‐role‐reversed swarms of Acraea encedon and A. encedana, and we discuss how the spread of the male‐killing infection may have converted this mating system into sex‐role‐reversed swarming.  相似文献   

9.
The mating system of Tegrodera aloga is similar to other blister beetles that have evolved sizeassortative mating in that males pass a cantharidin-rich spermatophore to their mates and females vary in size and fecundity. Despite this, previous studies found no assortative mating in this beetle. Results of this study suggest that nonassortative mating is not due to absolute constraints on mate choice. Males courted large females more frequently than small females, suggesting that males prefer big mates. Similarly, female choice is suggested by a large-male mating advantage in the absence of size-related male-male competition. In contrast to previous work, my results suggest that assortative mating may occur under certain conditions and may be due to large-phenotype mating advantages. The question remains, why does assortative mating occur only some of the time? One hypothesis is that assortative mating breaks down when sex ratios become male biased and males no longer discriminate between mates. However, although sex ratios can vary from day to day, assortative mating is not associated with periods when females outnumber males. Rather, the pattern appears to be associated with times of low overall population density. Hypotheses for density-dependent assortative mating are presented.  相似文献   

10.
Although only one or just a few matings are considered sufficient to maximise a female's reproductive success, polyandry is a common mating system in insects and other animals. Female polyandry may either result from direct or indirect benefits of mating multiply, or from male harassment and thus sexual conflict over mating. Here, we test whether the latter is involved in determining female mating frequency in the butterfly Bicyclus anynana. We used a full‐factorial design with three different sex ratios and densities each, resulting in a total of nine treatment groups. Sex ratio but not density affected female mating frequency, which increased with an increasingly male‐biased sex ratio. Our results thus suggest that female polyandry in B. anynana results from sexual conflict, although females seem to be able to reject courting males at least to some extent. Therefore, polyandry in this species may occur in the first place from convenience, as the costs of resisting male harassment may be higher than mating repeatedly.  相似文献   

11.
Åkesson, B. (Department of Zoology, University of Gothenburg, Göteborg, Sweden.) Incipient reproductive isolation between geographic populations of Ophryotrocha labronica (Polychaeta, Dorvilleidae). Zocl. Scripta 1 (5): 207–210, 1972.–The mechanism of sex determination and the incipient reproductive isolation between geographic populations of Ophryotrocha labronica are studied in intra- and interpopulation crosses. Two populations from the Naples area and one from Leghorn are employed in the crosses. The considerable genetic difference between the Leghorn population and any of the Naples populations is reflected in some crossing combinations by changes in sex ratios, by occurrence of individuals with a reduced viability in the progeny, by a decreased mating propensity, and by discrimination of mates from alien populations. It is stated that the changes in sex ratios, the decreased mating propensity, the dwarfed individuals in the progeny, and the preferential mating all reflect the incompatibility of gene complexes. The differences between reciprocal crosses are not fully explained. The occurrence of extranuclear DNA, as well as the existence of a maternal heredity in intrapopulation crosses, indicate that cytoplasmic inheritance may be one of the factors behind these reciprocal differences.  相似文献   

12.
In haplodiploid organisms, unmated or sperm depleted females are “constrained” to produce only male progeny. If such constrained females reproduce, the population sex ratio will shift toward males and unconstrained females will be selected to produce more females. Assuming that a female's own time spent constrained is an index of the population-wide level of constrained oviposition, and that constrained and unconstrained females reproduce at the same rate, the proportion of sons that females produce when unconstrained should decrease with increasing time spent constrained. Alternatively, if females cannot measure time spent constrained or if time spent constrained is not an index to the level of constrained oviposition in the population, the proportion of sons among progeny produced when unconstrained should not depend upon time spent constrained and should be female biased to an extent depending upon the average time spent constrained over evolutionary time. To test these predictions, we manipulated the amount of time spent virgin in the parasitoid wasp Aphelinus asychis Walker (Hymenoptera: Aphelinidae) and measured the number of males and females among progeny produced before and after mating. First, we found no interaction between age and age at mating in their effect on fecundity, which suggests that mating does not change fecundity. Second, we found that females mated at 8 days and 15 days produced equal sex ratios after mating but these were slightly more female biased than the sex ratios of females mated at 1 day. This observed “step response” suggests that females may perceive time from emergence to mating as a discrete rather than a continuous variable (i.e., short versus long), or that females do not perceive time per se but assess their age class (i.e., young versus old) at the time of mating.  相似文献   

13.
1. The adaptive significance of the observed variations in sex ratios in non‐marine ostracods is unclear. This study quantified the fecundity of females taken from a presumed fully sexual Eucypris virens population that were experimentally combined with different proportions of males (male : female sex ratios: 1 : 1, 1 : 2, 1 : 4, 1 : 8 and 0 : 1). 2. The results yielded no indications that female fecundity is altered by short‐term variations in the proportion of males, at least not within the range of sex ratios that are common in natural ostracod populations. Complete removal of males, however, did strongly reduce hatching success of dried eggs. This suggests the need for multiple mating events during the reproductive lifetime of the female. It also emphasizes the need for a minimum number of males, although this minimum number evidently may be rather low, as we found a high number of spermatozoa in the seminal receptacles after a single mating event. 3. The sex ratio in the source population was strongly female biased (1 : 3.4; n = 514), whereas in the hatchling assemblages reared in the laboratory, males and females were found in equal proportions (1 : 1.0; n = 1516), irrespective of the prevailing sex ratio. This clear discrepancy is intriguing, and points to the importance of epigenetic factors for the determination of field sex ratios.  相似文献   

14.
Regions of the chromosomes determining mating compatibility in some fungi, including Microbotryum lychnidis‐dioicae and Neurospora tetrasperma, exhibit suppressed recombination similar to sex chromosomes in plants and animals, and recent studies have sought to apply basic theories of sex chromosome evolution to fungi. A phylogeny of the MTL1 locus in Microbotryum indicates that it has become part of the nonrecombining regions of the mating‐type chromosomes in multiple independent events, and that recombination may have been subsequently restored in some cases. This illustrates that fungal mating‐type chromosomes can exhibit linkage relationship that are quite dynamic, adding to the list of similarities to animal or plant sex chromosomes. However, fungi such as M. lychnidis‐dioicae and N. tetrasperma exhibit an automictic mating system, for which an alternate theoretical framework exists to explain the evolution of linkage with the mating‐type locus. This study encourages further comparative studies among fungi to evaluate the role of mating systems in determining the evolution of fungal mating‐type chromosomes.  相似文献   

15.
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogenPhytophthora infestans.The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Voset al.,1995,Nucleic Acids Res.23:4407–4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates ofP. infestans.The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus.  相似文献   

16.
The relationship between environmental factors, sex ratio and mating system in Daphnia magna was examined, and the adaptiveness of environmental sex determination over ametic sex determination was explored. Monthly sexual sex ratios (males over total number of males and sexual females) ranged from 0.31 to 1.0, the three-year average equalling 0.61. However, if only the samples collected during the period of frequent sexuality from August to October are included, the sexual sex ratio becomes equal, 0.51. Sexual sex ratios varied real between samples during the same period and the standard errors appeared highest in July ad August. Typical of suck times is some uncertainty in the environment, and the environmental cues can be contradictory. Sex expression in Daphnia appears to be determined by responses to complicated interactions between different environmental factors, which adaptively alter the sex ratio. The longterm sexual sex ratio of Daphnia aproaching the equilibrium 1:1, despite environmental sex %termination, gives support for Fisier's classic theory of equal parental investment in both sexes. An equal sex ratio is advantageous also during periods of small population size because it maximizes the effective population size.  相似文献   

17.
Parasitoid sex ratios can be greatly influenced by mating and dispersal behaviour. Many sex ratio models assume that mating is strictly local (only mated females disperse from the natal patch) and that a single male is sufficient to inseminate all females in a brood. Bethylids (aculeate parasitoids) have been used to test predictions of these models, but less attention has been paid to testing their underlying assumptions. We investigated the timing of eclosion, mating and dispersal in mixed-sex and single-sex broods of the bethylid wasp Goniozus nephantidis. In mixed-sex broods, almost all females mate before dispersal and a single male is sufficient to inseminate virtually all females, even when brood sizes are large. Males disperse from both mixed-sex and all-male broods, but males in all-male broods disperse more slowly. Virgin females disperse from all-female broods, which are common. Virgin females can produce a brood, mate with their own sons and subsequently produce mixed-sex broods, but their success rate is very low. Virgin females could potentially circumvent sex allocation constraints by superparasitizing mixed-sex broods, but when presented with hosts bearing mixed-sex broods they destroy all members of the initial brood before ovipositing. Because of the high prevalence of single-sex broods and dispersal of both sexes, the mating structure of G. nephantidis is unlikely to conform to the assumption of strict local mating.  相似文献   

18.
Social and mating systems can be influenced by the distribution, abundance, and economic defendability of breeding partners and essential resources. Polygyny is predicted where males can economically defend multiple females or essential resources used by females. In contrast, monogamy is predicted where neither sex can monopolise multiple partners, either directly or through resource control, but where one mate is economically defendable. The mating system and reproductive behaviour of five species of coral reef goby were investigated and contrasted with population density and individual mobility. The two most abundant species (Asterropteryx semipunctatus and Istigobius goldmanni) were polygynous. In contrast, the less populous and more widely dispersed epibenthic species (Amblygobius bynoensis, Amblygobius phalaena and Valenciennea muralis) were pair forming and monogamous. All five species had low mobility, mostly remaining within metres (3 epibenthic species) or centimetres (2 cryptobenthic species) of a permanent shelter site. Interspecific differences in the mating system may have been shaped by differences in population density and the ability of reproductive individuals to economically defend breeding partners/sites. However, in a test of mating system plasticity, males of the three monogamous species did not mate polygynously when given the opportunity to do so in experimental manipulations of density and sex ratio. Mate guarding and complex spawning characteristics, which have likely co-evolved with the monogamous mating system, could contribute to mating system inflexibility by making polygynous mating unprofitable for individuals of the pair forming species, even when presented with current-day ecological conditions that usually favour polygyny.  相似文献   

19.
Sutter, R. P., Grandin, A. B., Dye, B. D., and Moore, W. R. 1996. (−) Mating type-specific mutants ofPhycomycesdefective in sex pheromone biosynthesis.Fungal Genetics and Biology20,268–279. We have isolated the first mating type-specific mutants in mucoraceous fungi. Both mutants inPhycomyces blakesleeanusappear to be defective in the same gene. The gene, present in both mating types, is necessary only in cultures of the (−) mating type. The gene codes for an enzyme in sex pheromone biosynthesis. The pheromone precursor made by the mutants is detectable only in cross-feeding experiments. The biological and solubility properties of the precursor suggest the precursor is 4-dihydrotrisporin, a metabolite of β-carotene. Separate studies with β-carotene-deficient mutants and Compound-P, a new chemically synthesized precursor of the pheromones, imply the constitutive level of enzymes for pheromone biosynthesis inPhycomycesis extremely low. In comparison, the level of enzymes for pheromone conversion to trisporic acid is higher. The mating type-specific mutants also catalyze the conversion of (+) pheromone to trisporic acid. This finding was unexpected because literature models predicted this reaction was catalyzed by the same enzyme which catalyzed the conversion of 4-dihydrotrisporin to (−) pheromone—a reaction missing in the (−) mating type-specific mutants. Thus, we propose a revised model for trisporic acid biosynthesis.  相似文献   

20.
Sex ratios can influence mating behaviour, population dynamics and evolutionary trajectories; yet the causes of natural sex ratio variation are often uncertain. Although secondary (birth) sex ratios in guppies (Poecilia reticulata) are typically 1:1, we recorded female-biased tertiary (adult) sex ratios in about half of our 48 samples and male-biased sex ratios in none of them. This pattern implies that some populations experience male-biased mortality, perhaps owing to variation in predation or resource limitation. We assessed the effects of predation and/or inter-specific resource competition (intraguild predation) by measuring the local catch-per-unit-effort (CPUE) of species (Rivulus killifish and Macrobrachium prawns) that may differentially prey on male guppies. We assessed the effects of resource levels by measuring canopy openness and algal biomass (chlorophyll a concentration). We found that guppy sex ratios were increasingly female-biased with increasing CPUE of Macrobrachium, and perhaps also Rivulus, and with decreasing canopy openness. We also found an interaction between predators and resource levels in that the effect of canopy openness was greatest when Macrobrachium CPUE was highest. Our study thus also reveals the value of simultaneously testing multiple environmental factors that may drive tertiary sex ratio variation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号