首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
FINE STRUCTURE OF RAT INTRAFUSAL MUSCLE FIBERS : The Polar Region   总被引:2,自引:1,他引:1       下载免费PDF全文
An ultrastructural comparison of the two types of intrafusal muscle fibers in muscle spindles of the rat was undertaken. Discrete myofibrils with abundant interfibrillar sarcoplasm and organelles characterize the nuclear chain muscle fiber, while a continuous myofibril-like bundle with sparse interfibrillar sarcoplasm distinguishes the nuclear bag muscle fiber. Nuclear chain fibers possess well-defined and typical M bands in the center of each sarcomere, while nuclear bag fibers contain ill-defined M bands composed of two parallel thin densities in the center of the pseudo-H zone of each sarcomere. Mitochondria of nuclear chain fibers are larger and more numerous than they are in nuclear bag fibers. Mitochondria of chain fibers, in addition, often contain conspicuous dense granules, and they are frequently intimately related to elements of the sarcoplasmic reticulum (SR). Striking differences are noted in the organization and degree of development of the sarcotubular system. Nuclear bag fibers contain a poorly developed SR and T system with only occasional junctional couplings (dyads and triads). Nuclear chain fibers, in contrast, possess an unusually well-developed SR and T system and a variety of multiple junctional couplings (dyads, triads, quatrads, pentads, septads). Greatly dilated SR cisternae are common features of nuclear chain fibers, often forming intimate associations with T tubules, mitochondria, and the sarcolemma. Such dilatations of the SR were not encountered in nuclear bag fibers. The functional significance of these structural findings is discussed.  相似文献   

2.
Summary The arrangement of myofilaments in the striated visceral muscle fibers of two arthropods (crayfish and fruitfly) and in the unstriated visceral fibers of one annelid (earthworm) was studied comparatively. Transverse sections through the A bands of arthropod visceral fibers indicate that each thick myofilament is surrounded by approximately 12 thin filaments. The myofilaments are less organized in the visceral fibers of the earthworm than in muscle fibers of the crayfish and fruitfly. The thick myofilaments of the earthworm are composed of subunits, 20–30 Å in diameter. The presence of two distinct sets of myofilaments in these slowly contracting striated and unstriated visceral muscle fibers suggests that contraction is accomplished via a sliding filament mechanism.In crayfish visceral fibers the sarcolemma invaginates at irregular intervals to form a long and unbranched tubular system at any level in the sarcomere. Dyads formed by the apposition of T and SR membranes are observed frequently. The distribution of the T and SR systems in the visceral fibers of the fruitfly and the earthworm is markedly reduced and dyads are infrequently observed. The reduced T and SR systems may be related to the slow contraction of these fibers. Transport of specific substances across the sarcolemma could initiate contraction or relaxation in these fibers.This study was supported by a training grant GM-00582-06 from the U.S. Public Health Service.  相似文献   

3.
The development and maturation of transverse (T) tubules and sarcoplasmic reticulum (SR) have been studied in pre- and postnatal mouse muscle, using selective "staining" of these membrane systems. As previously reported in the literature, orderly transverse orientation of the T tubules occurs late in development and early T-SR junctions (triads and dyads) are located at random along the T tubules in a predominantly longitudinal orientation. We find that initial appearance of transverse tubules occurs fairly abruptly, and that all early T tubules have a longitudinal orientation. Transverse orientation of the T tubule network, location of triads at the A-I junction, and development of differentiated regions of the SR are coordinated events which occur gradually over a period of about 3 weeks for leg muscle.s The timing of triad development coincides with that reported for the increase in slow calcium current and dihydropyridine binding. Differences in T tubule patterns between muscle fibers of EDL and soleus are apparent only at relatively late stages.  相似文献   

4.
Summary The three-dimensional structure of the sarcoplasmic reticulum (SR) in the red, white and intermediate striated muscle fibers of the extensor digitorum longus muscle of the rat was examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by the osmium-DMSO-osmium procedure.In all three types of fibers, the terminal cisternae and transverse tubules form triads at the level of the A-I junction. Numerous slender sarcotubules, originating from the A-band side terminal cisternae, extend obliquely or longitudinally and form oval or irregular shaped networks of various sizes in front of the A-band, then become continuous with the tiny mesh (fenestrated collar) in front of the H-band. The A-and H-band SR appears as a single sheet of anastomotic tubules. Numerous sarcotubules, originating from the I-band side terminal cisternae, extend in threedimensional directions and form a multilayered network over the I-band and Z-line regions. At the I-band level, paired transversely oriented mitochondria partly embrace the myofibril. The I-band SR network is poorly developed in the narrow space between the paired mitochondria, but is well developed in places devoid of these mitochondria.The three-dimensional structure of the SR is basically the same in all three muscle fiber-types. However, the SR is sparse on the surface of mitochondria, so the mitochondria-rich red fiber has a much smaller total volume of SR than the mitochondria-poor white fiber. Moreover, the volume of SR of the intermediate fiber is intermediate between the two.  相似文献   

5.
Single fibers isolated from walking leg muscles of crayfish have 8- to 10-µ sarcomeres which are divided into A, I, and Z bands. The H zone is poorly defined and no M band is distinguishable. Changes in the width of the I band, accompanied by change in the overlap between thick and thin myofilaments, occur when the length of the sarcomere is changed by stretching or by shortening the fiber. The thick myofilaments (ca. 200 A in diameter) are confined to the A band. The thin myofilaments (ca. 50 A in diameter) are difficult to resolve except in swollen fibers, when they clearly lie between the thick filaments and run to the Z disc. The sarcolemma invaginates at 50 to 200 sites in each sarcomere. The sarcolemmal invaginations (SI) form tubes about 0.2 µ in diameter which run radially into the fiber and have longitudinal side branches. Tubules about 150 A in diameter arise from the SI and from the sarcolemma. The invaginations and tubules are all derived from and are continuous with the plasma membrane, forming the transverse tubular system (TTS), which is analogous with the T system of vertebrate muscle. In the A band region each myofibril is enveloped by a fenestrated membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR extend over the A-I junctions of the myofibrils, where they make specialized contacts (diads) with the TTS. At the diads the opposing membranes of the TTS and SR are spaced 150 A apart, with a 35-A plate centrally located in the gap. It appears likely that the anion-permselective membrane of the TTS which was described previously is located at the diads, and that this property of the diadic structures therefore may function in excitation-contraction coupling.  相似文献   

6.
Summary The three-dimensional structure of the mitochondria and sarcoplasmic reticulum (SR) in the three types of twitch fibers, i.e., the red, white and intermediate skeletal muscle fibers, of the vastus lateralis muscle of the Japanese meadow frog (Rana nigromaculata nigromaculata Hallowell) was examined by high resolution scanning electron microscopy, after removal of the cytoplasmic matrices.The small red fibers have numerous mitochondrial columns of large diameter, while the large white fibers have a small number of mitochondrial columns of small diameter. In the medium-size intermediate fibers, the number and diameter of the mitochondrial columns are intermediate between those of the red and white fibers.In all three types of fibers, the terminal cisternae and transverse tubules form triads at the level of each Z-line. The thick terminal cisternae continue into much thinner flat intermediate cisternae, through a transitional part where a row of tiny indentations can be observed. Numerous slender longitudinal tubules originating from the intermediate cisternae, extend longitudinally or obliquely and form elongated oval networks of various sizes in front of the A-band, then fuse to form the H-band collar (fenestrated collar) around the myofibrils. On the surface of the H-band collar, small fenestrations as well as tiny hollows are seen. The three-dimensional structure of SR is basically the same in all three muscle fiber-types. However, the SR is sparse on the surface of mitochondria, so the mitochondria-rich red fiber has a smaller total volume of SR than the mitochondria-poor white fiber. The volume of SR of the intermediate fiber is intermediate between other the two.  相似文献   

7.
Skeletal muscles which have been soaked for 1 hr in a glycerol-Ringer solution and then returned to normal Ringer solution have a disrupted sarcotubular system. The effect is associated with the return to Ringer's since muscles have normal fine structure while still in glycerol-Ringer's. Karnovsky's peroxidase method was found to be a very reliable marker of extracellular space, filling 98.5% of the tubules in normal muscle. It was interesting to note that only 84.1% of the sarcomeres in normal muscle have transverse tubules. The sarcotubular system was essentially absent from glycerol-treated muscle fibers, only 2 % of the tubular system remaining connected to the extracellular space; the intact remnants were stumps extending only a few micra into the fiber. Thus, glycerol-treated muscle fibers provide a preparation of skeletal muscle with little sarcotubular system. Since the sarcoplasmic reticulum is not destroyed and the sarcolemma and myofilaments are intact in this preparation, of the properties of the sarcolemma may thus be separated from those of the tubular system.  相似文献   

8.
Summary The alary muscles of Locusta migratoria adults make up the major tissue of the dorsal diaphragm which separates pericardial and perivisceral sinuses in the abdomen. The alary muscles are striated with a sarcomere at rest measuring about 9 m. The Z-line has a staggered-beaded arrangement with A-bands and I-bands readily discernable. Thick myofilaments are surrounded by 10 or more thin filaments. The sarcoplasm has few mitochondria near the area of the Z-line, dyads are present and sarcoplasmic reticulum is poorly developed. Axons which innervate the alary muscle are either contained within invaginated folds of the sarcolemma of the muscle cells or the muscle cells send finger-like projections to envelop the axons. The synaptic terminals contain synaptic vesicles between 40 and 45 nm in diameter and a few electron-dense granules near or less than 170 nm in diameter. Away from synaptic terminals the axon profiles show few or no granules. The axons are accompanied everywhere by well-developed glial cells. This then is not typical neurosecretomotor innervation, however, the presence of electron-dense granules suggests the possibility of peptidergic neurotransmission.  相似文献   

9.
An electron microscopic study of internal and surface-connectedmembrane systems of leg muscle of the crab shows that thereare three kinds of surface-connected membrane systems in additionto an intracellular sarcoplasmic reticulum (SR). One is a systemof large infoldings of the sarcolemma referred to as clefts.These are longitudinally-oriented, flattened infoldings of boththe plasma membrane and the fibrous sheath of the fiber, andwere probably seen earlier with the light microscope. Extendinginto the fiber both from these clefts and from the free fibersurface are two systems of tubules of much smaller caliber,the Z tubules and the A tubules. The Z tubules are located,as their name indicates, near the Z lines of the myofibrils,and are thought to be attached to them mechanically. The A tubulesare found in pairs, near the ends of each A band, and are closelybound to the SR in two-part structures called dyads. Local-activationexperiments, like those done earlier by Huxley and Taylor, suggestthat the A tubules are involved in excitation-contraction coupling;no such experimental suggestion of function exists for the Ztubules.  相似文献   

10.
Summary An electron-microscopic study of the myotendinous portion of the diaphragm in the Wistar rat has shown that at the ends of muscle fibers, longitudinally oriented invaginations and peripheral furrows of the sarcolemma establish specialized contacts with individual sacs of the sarcoplasmic reticulum. The construction of these terminal contacts is similar to that of contacts between sarcolemmic T-tubules and terminal cisternae of the sarcoplasmic reticulum, characterized by formation of triads. The contact zones of the sac membrane are undulated and bound to the adjoining sarcolemma via electron-dense profiles of varying forms. Frequently, the terminal contacts and triads are located at the same level within the muscle fiber, at the borderline between A- and I-bands of the sarcomeres. At the ends of muscle fibers combined contacts between peripheral furrows of the sarcolemma, terminal cisternae of the sarcoplasmic reticulum, and T-tubules of the triads are also disclosed. The implications of the terminal contacts for muscle contraction are discussed.  相似文献   

11.
Twitch and slow muscle fibers, identified morphologically in the garter snake, have been examined in the electron microscope. The transverse tubular system and the sarcoplasmic reticulum are separate entities distinct from each other. In twitch fibers, the tubular system and the dilated sacs of the sarcoplasmic reticulum form triads at the level of junction of A and I bands. In the slow fibers, the sarcoplasmic reticulum is severely depleted in amount and the transverse tubular system is completely absent. The junctional folds of the postsynaptic membrane of the muscle fiber under an "en grappe" ending of a slow fiber are not so frequent or regular in occurrence or so wide or so long as under the "en plaque" ending of a twitch fiber. Some physiological implications of these differences in fine structure of twitch and slow fibers are discussed. The absence of the transverse tubular system and reduction in amount of sarcoplasmic reticulum, along with the consequent disposition of the fibrils, the occurrence of multiple nerve terminals, and the degree of complexity of the post junctional folds of the sarcolemma appear to be the morphological basis for the physiological reaction of slow muscle fibers.  相似文献   

12.
The electron microscopic study of the tail of Cercaria chackai reveals that it contains four sets of striated muscle bundles located central to the nonstriated circular and longitudinal muscles. The striated muscle consists of longitudinally oriented lamellar myofibres. Each myofibre contains a single "U" shaped myofibril. The banding pattern is analogous to that of vertebrate striated muscle. The sarcolemma is a simple surface membrane. There are no transverse tubular extensions of sarcolemma. The sarcoplasmic reticulum (SR) is very well developed with cisternae, tubules, and vesicles. SR cisternae form dyadic couplings with the sarcolemma. There is a set of flattened tubules of SR origin traversing the myofibril exactly at the Z region. These tubules are unique to the striated muscle of the cercarian tail and may have functional significance. A diagrammatic reconstruction of the myofibre is presented.  相似文献   

13.
The structure of the heart of Geukensia demissa, a common object of physiological and biochemical investigation, is described by scanning, transmission and freeze-fracture electron microscopy. A single-cell epithelial layer covers the ventricle, but an endothelium is lacking. Myofibers are small (6–7 μm diam.), mononucleate, and tapered. Glycogen is concentrated peripherally. Mitochondria are particularly concentrated under the sarcolemma, near the ends of the nucleus, and in rows between bundles of myofilaments. The myofilaments (6–8nm thin, 30–35 nm thick filament diam.) are loosely arranged into sarcomeres (2–4 μm) by Z bodies. Many of these Z bodies interconnect, and some anchor to the sarcolemma forming attachment plaques. Cells are joined by intercalated discs consisting of fascia adherentes, spot desmosomes, and gap junctions. The gap junctions include intramembrane particles. T tubules are absent. The sarcolemma is coupled to the junctional sarcoplasmic reticulum (JSR) over 357ndash;40% of the cell surface. Tubules extend from the JSR deep into and throughout the cell as an irregularly dispersed network. The SR occupies 1% of the cell volume. A few, small (0.1–1.0 μm) unmyelinated nerves are present, but no neuromuscular junctions were seen. The auricles have fewer and smaller myocytes than the ventricle. The auricles also contain podocytes with pedicels having 20–35 nm slits and containing sieve-like projections. The morphology of the Geukensia heart is similar to that of other bivalves.  相似文献   

14.
In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon.  相似文献   

15.
An ultrastructural study has been undertaken on the equatorial (sensory) region of the rat muscle spindle. Two kinds of intrafusal muscle fibers, a nuclear bag fiber and a nuclear chain fiber, have been identified in this region on the basis of fiber diameter, nuclear disposition, and M-band appearance. The large-diameter nuclear bag fiber contains an aggregation of tightly packed vesicular nuclei, while the small-diameter nuclear chain fiber contains a single row of elongated, well-separated nuclei. Both muscle fibers contain an attenuated peripheral cylinder of myofilaments surrounding a central core of sarcoplasm. Elements of the sarcotubular system, dilatations of the sarcoplasmic reticulum, and the presence of other sarcoplasmic organelles and inclusions are considerably more abundant in the nuclear chain fiber than in the nuclear bag fiber. Leptomeric organelles and membrane-bounded sarcoplasmic granules are present in both intrafusal fiber types and may be situated between the myofibrils or in intimate association with the sarcolemma. The functional significance of some of these structural findings is discussed.  相似文献   

16.
The ultrastructural features of cardiac muscle cells and their innervation were examined in the tarantula spider Eurypelma marxi Simon. The cells are transversely striated and have an A band length of about three microns. H zones are indistinct and M lines are absent. Thick and thin myofilament diameters are approximately 200 and 70 Å respectively. Eight to 12 thin filaments usually surround each thick one. Accumulations of thick and thin myofilaments occur perpendicular to the bulk of the myofilaments in some cells. The Z line is discontinuous and thick filaments may pass through the spaces in the Z line. Extensive systems of sarcoplasmic reticulum and transverse tubules are present; these form numerous dyadic junctions in both A and I band regions. Sarcolemmal invaginations form Z line tubules; lateral extensions of the plasma membrane portion of these invaginations form dyads. Nerve branches of the cardiac ganglion make multiple neuromuscular synapses with at least some of the cardiac muscle cells. Both large granular and small agranular vesicles are present in the presynaptic terminals. Intercalated discs similar to those present in other arthropod hearts occur between the ends of adjacent cardiac muscle cells.  相似文献   

17.
The spacing between the thick myofilaments of muscle fibers from the walking legs of crayfish (Orconectes) was determined by optical transform analysis of electron micrograph plates of fixed single fibers and by X-ray diffraction of living single fibers. Sarcomere lengths were determined by light diffraction prior to fixation and prior to the in vivo experiments. From these combined measurements, it is demonstrated that the unit-cell volume of the myofilament lattice is constant during muscle shortening, indicating that the myofilament lattice works in a constant-volume manner. It is further demonstrated with X-ray diffraction measurements of living single fibers that the myofilament lattice continues to work at constant volume after the sarcolemma is removed from the fiber. This indicates that the constant-volume behavior of muscle is inherent to the myofilament lattice.  相似文献   

18.
The ultrastructure of cat papillary muscle was studied with respect to the organization of the contractile material, the structure of the organelles, and the cell junctions. The morphological changes during prolonged work in vitro and some effects of fixation were assessed. The myofilaments are associated in a single coherent bundle extending throughout the fiber cross-section. The absence of discrete "myofibrils" in well preserved cardiac muscle is emphasized. The abundant mitochondria confined in clefts among the myofilaments often have slender prolongations, possibly related to changes in their number or their distribution as energy sources within the contractile mass. The large T tubules that penetrate ventricular cardiac muscle fibers at successive I bands are arranged in rows and are lined with a layer of protein-polysaccharide. Longitudinal connections between T tubules are common. The simple plexiform sarcoplasmic reticulum is continuous across the Z lines, and no circumferential "Z tubules" were identified. Specialized contacts between the reticulum and the sarcolemma are established on the T tubules and the cell periphery via subsarcolemmal saccules or cisterns. At cell junctions, a 20 A gap can be demonstrated between the apposed membranes in those areas commonly interpreted as sites of membrane fusion. In papillary muscles worked in vitro without added substrate, there is a marked depletion of both glycogen and lipid. No morphological evidence for preferential use of glycogen was found.  相似文献   

19.
With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals.  相似文献   

20.
The lower extrinsic protractor muscle in the buccal mass of Aplysia consists of bundles of muscle fibers 4–12 m̈ in diameter, containing thick and thin filaments that are not arranged in a transversely striated pattern. Individual fibers come close to one another and form specialized junctional regions. Electrophysiological evidence indicates that the muscle fibers form an electrical syncytium. Muscle bundles are innervated by more than one excitatory axon at a number of points along their length. The presynaptic terminals contain spherical electron-lucent vesicles and a few larger electron-dense vesicles. There are no obvious structural postsynaptic specializations. Graded contraction can result from summation of excitatory junctional potentials in separate axons or from summation and facilitation of junctional potentials from a single axon. The buildup of facilitation during a train of stimuli results from the linear summation of facilitation remaining from preceding impulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号