首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The lower extrinsic protractor muscle in the buccal mass of Aplysia consists of bundles of muscle fibers 4--12 mu in diameter, containing thick and thin filaments that are not arranged in a transversely striated pattern. Individual fibers come close to one another and form specialized junctional regions. Electrophysiological evidence indicates that the muscle fibers form an electrical cyncytium. Muscle bundles are innervated by more than one excitatory axon at a number of points along their length. The presynaptic terminals contain spherical electron-lucent vesicles and a few larger electron-dense vesicles. There are no obvious structural postsynaptic specializations. Graded contraction can result from summation of excitatory junctional potentials in separate axons or from summation and facilitation of junctional potentials from a single axon. The buildup of facilitation during a train of stimuli results from the linear summation of facilitation remaining from preceding impulses.  相似文献   

2.
Fibers of the metathoracic extensor tibia muscle of the cricket Teleogryllus oceanicus are innervated by a slow excitatory axon (slow fibers), a fast excitatory axon (fast fibers), or by both slow and fast axons (dual fibers). Sectioning metathoracic nerve 5 removes the fast axon input to the muscle but not that of the slow axon. Following such partial denervation, the mechanical responses initiated by the slow axon increase progressively for at least 30 days; twitch tensions reach 5–10 times those of control muscles and tetanic tensions 10–30 times control values. After sectioning nerve 5, resting membrane potentials decrease in those fibers which originally received fast axon input and the input resistance of all fiber types increases, including that of slow fibers which are not innervated through nerve 5. Excitatory junctional potentials (EJPs) initiated by the slow axon become larger following partial denervation, accounting in part for the larger contraction amplitudes. The increased input resistance is adequate to account for the larger EJPs in slow fibers but not for the proportionally greater increase in EJP amplitude in fibers which were formerly dually innervated. The change in EJP amplitude is abrupt in slow fibers and gradual in formerly dual fibers.  相似文献   

3.
Neuromuscular synapses of the "fast" excitatory axon supplying the main extensor muscle in the leg of the shore crab Pachygrapsus crassipes were studied with electrophysiological and electron-microscopic techniques. Electrical recording showed that many muscle fibers of the central region of the extensor muscle responded only to stimulation of the fast axon, and electron microscopy revealed many unitary subterminal axon branches. Maintained stimulation, even at a low frequency, resulted in depression of the excitatory junctional potentials (EJPs) set up by the fast axon but EJPs of different muscle fibers depressed at different rates, indicating some physiological heterogeneity among the fast-axon synapses. Focal recording at individual synaptic sites on the surfaces of the muscle fibers showed quantal contents ranging from 1.4 to 5.5 at different synapses; these values are relatively high in comparison with similar determinations made in the crayfish opener muscle. Synapse-bearing nerve terminals were generally relatively small in diameter and filiform, with many individual synaptic contact areas of uniform size averaging 0.6 micron2. All of the individual synapses had a presynaptic "dense body" at which synaptic vesicles clustered. If these structures represent release points for transmitter quanta, the initial high quantal content would have an ultrastructural basis. The mitochondial content of the nerve terminals, the synaptic vesicle population, and the specialized subsynaptic sarcoplasm were all much reduced in comparison with tonic axon synaptic regions in this and other crustaceans. The latter features may be correlated with the relatively infrequent use of this axon by the animal, and with rapid fatigue.  相似文献   

4.
Summary We have examined the effects of temperature changes on the stretcher muscle and its motor supply in a crab (Pachygrapsus crassipes). An increase in temperature caused a decrease in the amplitude of evoked excitatory junctional potentials (ejp's). Above a critical threshold a single action potential in the excitor (E) or specific inhibitor (SI) axon provoked multiple spikes in the appropriate axon and concomitant ejp's or inhibitory junctional potentials (ijp's) in the stretcher muscle fibers. The critical temperature for generation of peripheral spikes was dependent upon the crab's thermal history.In preparations in which a shock to the E axon evoked repetitive firing, stimulation of the SI axon at about the same time as the E axon abolished or curtailed the peripherally generated E axon responses. No reciprocal modulation of SI activity by the E axon was observed. GABA abolished the peripheral generation of E spikes and picrotoxin prevented SI modulation of E activity. We suggest that the site of SI modulation is at the axo-axonal synapses, possibly at the fine E axon branches and the bottlenecks along the E axon where inhibitory synapses have been observed.Abbreviations CI common inhibitor (axon) - E excitor (axon) - ejp excitatory junctional potential - ijp inhibitory junctional potential - SI specific inhibitor axon This work was supported by grants awarded to Dr. Atwood from the National Research Council of Canada and the Muscular Dystrophy Association of Canada.  相似文献   

5.
The relative contribution of pre- and postsynaptic mechanisms to peripheral inhibition has been analyzed in the abdominal slow flexor muscles of crayfish and lobsters. The conductance of the muscle fiber membrane may be increased to five or more times its resting value by repetitive stimulation of the peripheral inhibitory axon, and this effect accounts for all of the attenuation exerted by the inhibitor against excitatory junctional potentials. No "critical interval" has been found at which an inhibitory nerve impulse produces anomalously large reduction of a following depolarizing junctional potential; electrotonic depolarizations and junctional potentials are identically affected under all phase conditions. The presynaptic inhibitory mechanism is, therefore, absent in this system. In the dactyl opener muscle, on the contrary, most of the attenuation of excitatory junctional potentials is achieved presynaptically, though equally large postjunctional conductance changes are also seen (Dudel and Kuffler, 1961). The difference is correlated with a difference in the reflex operation of the two muscles. Reflex inhibition in the abdominal slow flexors is primarily central, whereas in the dactyl opener, inhibition is brought about by an increase in inhibitory nerve discharge frequency without central suppression of the single excitatory axon. The function of peripheral inhibition in the abdominal flexors is presumably to terminate residual depolarization by reducing the long time-constant of the muscle fibers.  相似文献   

6.
The membrane potential of the E2 axon and the bender muscle fibers increased with temperature. The input resistance of the axon, the spike amplitude and time course declined with temperature. Excitatory junctional potentials (ejps) exhibited maximum amplitudes and minimum facilitation at about the same temperature. Ejp time course and muscle membrane input resistance declined with temperature. Tension produced by the muscle also declined but then increased when additional spikes were generated in the periphery of the E2 axon.  相似文献   

7.
“Venous” blood enters the crustacean heart through bivalved ostia. Each ostium is a discrete anatomical unit that remains functional even when isolated from the heart. Muscle fibers produce overshooting action potentials that have a plateau of variable duration in response to nervous drive from the cardiac ganglion or during trains of electrical stimuli. Contractions show summation and facilitation when stimulated by trains of stimuli delivered at rates greater than 0.5 s−1 and 0.2 s−1, respectively. Contraction amplitude increases with stimulating impulse frequency and train duration. Maximum force occurs at 1.2 times the slack length. The morphology of ostial fibers resembles that of myocardial fibers. Interconnected bundles of myofilaments occur in both the ostial fibers and the myocardial fibers. In ostial and myocardial fibers, the myofilament bundles are invested by perforated sheets of sarcoplasmic reticulum, and these sheets interface with a network of sarcolemmal tubules to form dyadic interior couplings at the level of the sarcomeric H-bands. The contractile apparatus originates and terminates at intermediate junctions on the transverse cellular boundaries, and the lateral surfaces of the muscle fibers are linked by a modest number of communicating (gap) junctions. Accepted: 10 August 1999  相似文献   

8.
Summary The highly mobile cyclopic compound eye of Daphnia magna is rotated by six muscles arranged as three bilateral pairs. The three muscles on each side of the head share a common origin on the carapace and insert dorsally, laterally and ventrally on the eye. The dorsal and ventral muscles are each composed of two muscle fibers and the lateral muscle is composed of from two to five fibers, with three the most common number. Individual muscle fibers are spindle-shaped mononucleated cells with organized bundles of myofilaments. Lateral eye-muscle fibers are thinner than those of the other muscles but are otherwise similar in ultrastructure. Two motor neurons innervate each dorsal and each ventral muscle and one motor neuron innervates each lateral muscle. The cell bodies of the motor neurons are situated dorsally in the supraesophageal ganglion (SEG) and are ipsilateral to the muscles they innervate. The dendritic fields of the dorsal-muscle motor neurons are ipsilateral to their cell bodies; those of the ventral-muscle motor neurons are bilateral though predominantly contralateral. The central projections of the lateral-muscle motor neurons are unknown. In the dorsal and ventral muscles one motor axon synapses principally with one muscle fiber; in each lateral muscle the single motor axon branches to, and forms synapses with, all the fibers. The neuromuscular junctions, characterized by pre- and postsynaptic densities and clear vesicles, are similar in all the eye muscles.  相似文献   

9.
Crustacean neuromuscular synapses arising from a single excitor axon are known to be well differentiated among different muscle fibers but little is known about their condition along single fibers. Focal recording techniques were used to examine the quantal transmitter release and facilitation properties of synapses in the single excitatory innervated distal accessory flexor muscle of the lobster, Homarus americanus. Synapses were reliably differentiated with respect to quantal output so that those located near the tendon end were 1.15–4.12 times greater than those at the opposite, exoskeletal end (p < 0.01, paired t-test). Regional differences were also seen in the amount of facilitation determined from twin pulse experiments. The fine structural basis for these differences was determined by serial section electron microscopy of 10-μm segments at each end to ensure that the area of focal recording was sampled. No quantitative differences were found in the terminals or synapses in the two regions. Instead, the physiological diversity was correlated with number and size of presynaptic dense bars. Thus, the tendon end had a greater number and larger mean surface area of dense bars compared to the exoskeletal end. This heterogeneity of excitatory multiterminal innervation is correlated with the axonal branching pattern. Thus, the main axon and the larger primary axon branches lie in close proximity to the tendon end of the muscle fibers, whereas the exoskeletal end is innervated by smaller secondary and tertiary axonal branches. This proximity to the large axonal branches of the higher quantal output synapses at the tendon end may be regulated by some neural influence including a timing of innervation and/or access to greater amounts of metabolites in the larger branches which may be conducive to forming high-output synapses.  相似文献   

10.
Summary Inhibitory neuromuscular synapses formed by the common inhibitor (CI) neuron on the distal accessory flexor muscle (DAFM) in the lobster, Homarus americanus, were studied with electrophysiological and electron-microscopic (thin-section and freeze-fracture) techniques. Postsynaptic inhibition as indicated by inhibitory junctional potentials was several-fold stronger on distal compared to proximal muscle fibers. This difference correlated with the results of serial thin-section studies, which showed more inhibitory synapses on distal fibers than on their proximal counterparts. Effects of postsynaptic inhibition on excitatory junctional potentials via current shunting had a morphological correlate in the spatial relationship between inhibitory and excitatory synapses on the distal fibers. Inhibitory synapses were larger than their excitatory counterparts and had fewer glial processes. In freeze-fracture views, inhibitory synapses did not appear as raised plateaus in the P-face as do excitatory synapses, and their active zones were more widely scattered. The intramembrane particles in the inhibitory postsynaptic membrane-representing neurotransmitter receptors-are arranged in parallel rows in the sarcolemmal P-face and have complementary furrows in the sarcolemmal E-face. Altogether, our findings help to describe a population of inhibitory neuromuscular synapses formed by the CI neuron in lobster muscle.  相似文献   

11.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

12.
There are two pairs of muscles in each abdominal segment of the crab; one pair of flexors and one pair of extensors. In the early larval stages the muscles have short sarcomeres--a property of fast fibers--and high thin to thick filament ratios--a property of slow fibers. In the adult the abdominal muscles are intermediate and slow, since they have fibers with intermediate and long sarcomeres, high thin to thick filament ratios, low myofibrillar ATPase activity, and high NADH diaphorase activity. The different fiber types are regionally distributed within the flexor muscle. Microelectrode recordings from single flexor muscle fibers in the adult showed that most fibers are supplied by three excitatory motor axons, although some are supplied by as many as five efferents. One axon supplies all of the flexor muscle fibers in its own hemisegment, and the evoked junctional potentials exhibit depression. This feature together with the innervation patterns of the fibers are similar to those reported for the deep flexor muscles of crayfish and lobsters. Therefore, in the adult crab, the abdominal flexor muscles have some features in common with the slow superficial flexors of crayfish and other features in common with the fast deep flexor muscles.  相似文献   

13.
The properties of the penis retractor muscle of Aplysia have been studied using intracellular, sucrose gap and tension recording. The fibers are of the invertebrate smooth muscle type and exhibit slow contractions which occur spontaneously or in response to stretch in isolated preparations. Individual muscle fibers are innervated by excitatory and inhibitory axons. A variety of sizes of excitatory and inhibitory junctional potentials can be recorded from them. The innervation is probably diffuse and functionally polyneuronal. The fibers are electrically coupled, permeable to potassium and chloride at rest, and exhibit no overshooting active responses. The muscle shows graded responses of depolarization and contraction proportional to strength of nerve stimulation. Facilitation and depression of junctional potentials are seen with various frequencies of nerve stimulation. Post-tetanic potentiation occurs with nerve stimulation at frequencies from 2 to 50 Hz and is suppressed in the presence of increased extracellular calcium concentrations.  相似文献   

14.
The frontal ganglion of the silkworm (Bombyx mori) gives rise to a visceral nerve, branches of which include a pair of anterior cardiac nerves and a pair of the posterior cardiac nerves. Forward-fill of the visceral nerve with dextran labeled with tetramethyl rhodamine shows the anterior cardiac nerves innervate the anterior region of the dorsal vessel. Back-fill of the anterior cardiac nerves with Co2+ and Ni2+ ions and the fluorescent dye reveals that the cell bodies of two motor neurons are located in the frontal ganglion. Injection of 5, 6-carboxyfluorescein into the cell body of an identified motor neuron shows that the neuron gives rise to an axon running to the visceral nerve. Unitary excitatory junctional potentials (EJPs) were recorded from a myocardial cell at the anterior end of the heart. They responded in a one-to-one manner to electrical stimuli applied to the visceral nerve, or to impulses generated by a depolarizing current injected into the cell body. EJPs induced by stimuli at higher than 0.5 Hz showed facilitation while those induced at higher than 2 Hz showed summation. Individual EJPs without summation, or a train of EJPs with summation, caused acceleration in the phase of posterograde heartbeat and heart reversal from anterograde heartbeat to posterograde heartbeat. It is likely that the innervation of the anterior region of the dorsal vessel by the motor neurons, through the anterior cardiac nerves is responsible for the control of heartbeat in Lepidoptera, at least in part.  相似文献   

15.
Two aspects of crustacean neuromuscular physiology are discussed:(1) the ultrastructural identification of the excitatory andinhibitory nerve terminals, and (2) the characteristics of,and the possible mechanisms for, facilitation. The first problem was studied in crayfish opener muscle whichhas one excitatory and one inhibitory axon. One of the nerveswas stimulated in the presence of DNP until synaptic transmissionfailed; the preparations were then fixed for electron microscopy.Whenever the excitatory nerve was stimulated, the terminalswith round synaptic vesicles were depleted while nearby terminalswith smaller elongate vesicles were normal. When the inhibitorynerve was stimulated, the converse was true. The possible reasons for the diversity in crustacean neuromuscularproperties are discussed. Large EPSP's with a high quantal content(m), appear to be produced by terminals which are invaded bya propagated spike. Small EPSP's (small m) appear to be producedby terminals which don't spike and which are depolarized bya decrementally conducted potential. There is an inverse relationshipbetween m and the amount of facilitation. The physiologicalbasis for facilitation is discussed; previous hypotheses arefound wanting and a new one is proposed, that of slow depolarization.  相似文献   

16.
The deep extensor abdominal muscle consisting of one medial and two lateral muscle bundles together with the nerve innervating the muscles of crayfish species Astacus astacus, was prepared. Light microscopic investigations of methylene blue stained preparations showed that the nerve innervating the deep extensor abdominal muscle consists of five distinct axons. The five axons were stained separately with lucifer yellow and the innervation pattern of the axons was determined. To confirm the histological results the axons were also stimulated with a suction electrode to elicit excitatory postsynaptic currents on the muscle membrane which were detected using a macro patch electrode. The muscle is innervated by a common excitatory and a common inhibitory axon branching over all three muscle bundles and sending additionally a branch to the L1-bundle of the next posterior segment, and by two axons specific for the two lateral muscle bundles. The axon specific for the innervation of the L1-bundle sends also a branch to the L1-bundle of the next posterior segment. In addition there is one excitatory axon which directly innervates the medial muscle bundle of the next posterior segment branching in most of the cases also to the medial bundle of the segment where it originates.Abbreviations DEAM deep extensor abdominal muscle - EPSC excitatory postsynaptic current - IPSC inhibitory postsynaptic current - L lateral - M medial - GABA -aminobutyric acid  相似文献   

17.
Development of the neuromuscular junction on differentiating muscle was investigated in the regenerating limb of the newt Triturus. Motor end-plate formation begins when vesicle-filled axon terminations approach differentiating muscle cells that have reached the stage of a multinucleate cell containing myofibrils. Slight ridges or elevations occur on the muscle surface, and there is an increase in density of the cytoplasm immediately beneath the plasma membrane of the elevation. The axon becomes more closely approximated to the muscle cell and comes to lie in a shallow depression or gutter on the surface of the muscle. The surface ridges increase in length and constrict at their bases to form junctional folds. In the axon terminal, focal accumulations of vesicles are found where the axon contour projects slightly opposite the secondary synaptic clefts. Cholinesterase activity in the developing junctions was demonstrated by the thiolacetic acid-lead nitrate method. Enzymatic activity is not found on intercellular nerve fibers or the muscle surface prior to close approximation of axon endings and muscle. Eserine- and DFP-sensitive activity appears concurrently with morphological differentiation. Activity occurs in membranous tubulovesicles in the sarcoplasm subjacent to the neuromuscular junction and in association with the sarcolemma. The largest reaction deposits occur at the tips of the emerging junctional folds. Smaller and less numerous localizations occur on the axon membrane and within the axoplasm. It is concluded from these studies that the nerve endings have an inductive effect on both the morphological and chemical specializations of the neuromuscular junction.  相似文献   

18.
Summary InLumbricus terrestris the wall of the pharynx is built up from obliquely striated longitudinal and circular muscle layers. The occurrence of perikarya and nerve bundles showing green fluorescence suggests the presence of aminergic innervation in the pharynx. A significant number of chemical synapses were detected in the neuropil among axon terminals. The junctional gap is generally 100–300 nm wide in type I junctions which resemble the cholinergic motor endplates of vertebrate skeletal muscle. A narrow junctional gap of about 25 nm is characteristic of the close contacts in the type II neuromuscular junction. Agranular spherical vesicles, together with small and large dense-cored granules, fill in these axon terminals.  相似文献   

19.
Summary The stretcher inhibitor motoneuron of each thoracic limb of a crayfish (Pacifastacus leniusculus) was consistently found to innervate parts of the closer muscle, in addition to the stretcher muscle; it is thus not a specific inhibitor as previously thought. The common inhibitory motoneuron also innervates parts of both muscles. Some individual closer muscle fibers are inhibited more strongly by one inhibitor, some by the other, and some fairly equally by both; no general rule governing the inhibitors' closer muscle outputs became evident. In the claw, the distal closer fibres with the longest membrane time constants are all strongly inhibited by the stretcher inhibitor, and some by the common inhibitor as well.No other thoracic limb muscles were found to receive the stretcher inhibitor. The opener inhibitor's effects could be detected only in the opener muscle. The common inhibitor inhibits all walking leg muscles effectively. In the cheliped, it consistently inhibits all except the opener muscle, where its output may be vestigial. Its axon emerges through the ganglion's first root, whereas the opener and stretcher inhibitors' axons pass through the second root. The fast and slow excitatory axons to the extensor muscle also exit separately through the first and second roots, as in locusts.Abbreviations CI common inhibitor - EJP excitatory junctional potential - IJP inhibitory junctional potential - OI opener inhibitor - SI stretcher inhibitor  相似文献   

20.
Summary The innervation of the intestinal wall in the teleosts Myoxocephalus and Pleuronectes was examined electron microscopically. Two classes of axons can be identified. The first, which is in the majority, contains numerous 50–150 nm granular vesicles as well as some 40–50 nm agranular vesicles while the second contains predominantly the 40–50 nm agranular vesicles. Chromate/dichromate staining methods suggest that the first type is aminergic. Both types lie in close association with the perikarya of intrinsic myenteric neurons but only axons containing predominantly agranular vesicles have synaptic membrane specialisations. No axon bundles pass into the longitudinal muscle layer in Myoxocephalus gut and though some do in Pleuronectes, they do not closely approach the smooth muscle cells. Axons containing large granular vesicles lie in intimate contact with the myocytes of the circular muscle layer. Both axon types pass through the submucosa to form a plexus underneath the mucosal epithelium. Varicosities containing agranular or granular vesicles are separated from the epithelial cells by a gap of about 200 nm in which lies a basal lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号