首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The b-wave of the isolated rabbit retina was compared with the ganglion cell response to light before and after modification of the retina's incubating medium. Marked diminution of the b-wave, with no reduction in ganglion cell response, was observed under three experimental conditions: (1) following a short period of anoxia; (2) following a short period in 0.2 mM Ca++; (3) in a small percentage of preparations, simply as a result of prolonged incubation in control medium. In contrast, a short period in 50 mM K+ led to a parallel fall and parallel recovery of both responses. It is apparent that under selected conditions the field potentials which constitute the b-wave are poorly correlated with the retina's neural activity.  相似文献   

2.
A spatio-temporal model of ganglion cell receptive fields is proposed on the basis of receptive field characteristics of cat retinal ganglion cells reported in our previous paper. The model consists of the linear and nonlinear mechanisms in the ganglion cell receptive field. The linear mechanism is assumed to be composed of antagonistic center and surround mechanisms. Then, by integrating these mechanisms we construct a spatio-temporal impulse response function of ganglion cell receptive field. Here we assume that spatio-temporal impulse response function may be factored into spatial and temporal terms. By Fouriertransforming the spatio-temporal impulse response function, we can obtain the spatio-temporal transfer function. Contrast sensitivity characteristics of X-and Y-cells in the cat retina may be explained by the transfer function.  相似文献   

3.
4.
On the basis of anatomical and physiological results of the vertebrate retina, a method is proposed for analysing the respective fields of ganglion cells in the cat retina. In the model, we assume the following: (a) Ganglion cells receive their input from bipolar and/or amacrine cells. (b) The nonlinearity of ganglion cell responses is due to the activities of transient type amacrine cells. The method has been proved to be effective. According to the results of this investigation, the receptive field properties of X type and Y type ganglion cells are heterogeneous. Thus, it may be considered that their receptive fields consist of center and surround mechanisms. The receptive field properties of X-cells are almost linear and the X-cells seem to receive most of their input from bipolar cells. On the other hand, the ones of Y-cells are highly nonlinear. Consequently, it is conceivable that the Y-cells receive their input mainly from transient type amacrine cells.  相似文献   

5.
6.
The dendrites of ganglion cells in the retina have an excess number of spines and branches that are normally lost during the first postnatal month of development. We investigated whether this dendritic remodeling can be prevented when the action potential activity of ganglion cells is abolished by chronic intraocular injections of tetrodotoxin (TTX) during the first 4 or 5 postnatal weeks in the cat. Dendritic tree morphologies of alpha and beta ganglion cells from TTX-treated, non-TTX-treated (contralateral eye), and normal control retinae were compared after intracellular filling with Lucifer yellow. Qualitative observations and quantitative measurements indicate that TTX treatment does not prevent the normally occurring loss of spines and dendritic branches. Indeed, the dendritic trees of both alpha and beta cells in TTX injected eyes actually have even fewer spines and branches than normal cells at equivalent ages. However, because the total dendritic lengths of these cells are also reduced after TTX blockade, spine density is indistinguishable from untreated animals at the same age. In addition, although dendritic field areas are not altered with treatment, the complexity of the dendritic trees is reduced. These observations suggest that dendritic remodeling can occur in the absence of ganglion cell action potential activity. Thus, the factors that influence the dendritic and axonal development of retinal ganglion cells must differ, because similar TTX treatment during the period of axonal remodeling does have profound effects on the final pattern of terminal arborizations.  相似文献   

7.

Background

Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye.

Methodology/Principal Findings

We ‘imaged’ the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated.

Conclusion/Significance

Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature.  相似文献   

8.
Aldrin epoxidase activity in liver microsomes from streptozotocin-diabetic rats is only 40% of that from normal rats. Epoxidation of aldrin has also been assayed in freshly isolated hepatocytes from normal rats. Addition of 10–7 M glucagon to the incubation medium leads to a decreased aldrin epoxidase activity. Owing to the previously reported phosphorylation of a purified cytochrome P-450 isozyme, it is postulated that the cytochrome P-450 dependent aldrin epoxidase may be regulated by a glucagon induced phosphorylation process.  相似文献   

9.
The dendrites of ganglion cells in the retina have an excess number of spines and branches that are normally lost during the first postnatal month of development. We investigated whether this dendritic remodeling can be prevented when the action potential activity of ganglion cells is abolished by chronic intraocular injections of tetrodotoxin (TTX) during the first 4 or 5 postnatal weeks in the cat. Dendritic tree morphologies of alpha and beta ganglion cells from TTX-treated, non-TTX-treated (contralateral eye), and normal control retinae were compared after intracellular filling with Lucifer yellow. Qualitative observations and quantitative measurements indicate that TTX treatment does not prevent the normally occurring loss of spines and dendritic branches. Indeed, the dendritic trees of both alpha and beta cells in TTX injected eyes actually have even fewer spines and branches than normal cells at equivalent ages. However, because the total dendritic lengths of these cells are also reduced after TTX blockade, spine density is indistinguishable from untreated animals at the same age. In addition, although dendritic field areas are not altered with treatment, the complexity of the dendritic trees is reduced. These observations suggest that dendritic remodeling can occur in the absence of ganglion cell action potential activity. Thus, the factors that influence the dendritic and axonal development of retinal ganglion cells must differ, because similar TTX treatment during the period of axonal remodeling does have profound effects on the final pattern of terminal arborizations.  相似文献   

10.
Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.  相似文献   

11.
12.
d -Serine, the endogenous ligand for the glycine modulatory binding site of the NMDA receptor, and serine racemase, the enzyme that converts l -serine to d -serine, have been reported in vertebrate retina; initial reports suggested that localization was restricted to Müller glial cells. Recent reports, in which d -serine and serine racemase were detected in neurons of the brain, prompted the present investigation of neuronal expression of d -serine and serine racemase in retina and whether expression patterns were developmentally regulated. RT-PCR, in situ hybridization, western blotting, immunohistochemistry, and immunocytochemical methods were used to localize d -serine and serine racemase in intact retina obtained from 1 to 3 day, 3 week, and 18 week mouse retinas and in primary ganglion cells harvested by immunopanning from neonatal mouse retina. Results of these analyses revealed robust expression of d -serine and serine racemase in ganglion cells, both in intact retina and in cultured cells. The levels appear to be developmentally regulated with d -serine levels being quite high in ganglion cells of neonatal retinas and decreasing rapidly postnatally. Serine racemase levels are also developmentally regulated, with high levels detected during the early postnatal period, but diminishing considerably in the mature retina. This represents the first report of neuronal expression of d -serine and serine racemase in the vertebrate retina and suggests an important contribution of neuronal d -serine during retinal development.  相似文献   

13.
Diverse cell types and parallel pathways are characteristic of the vertebrate nervous system, yet it remains a challenge to define the basic components of most neural structures. We describe a process termed retrograde photodynamics that allowed us to rapidly make the link between morphology, physiology, and connectivity for ganglion cells in the macaque retina that project to the lateral geniculate nucleus (LGN). Rhodamine dextran injected into the LGN was transported retrogradely and sequestered within the cytoplasm of ganglion cell bodies. Exposure of the retina to light in vitro liberated the tracer and allowed it to diffuse throughout the dendrites, revealing the cell's complete morphology. Eight previously unknown LGN-projecting cell types were identified. Cells could also be targeted in vitro for intracellular recording and physiological analysis. The photodynamic process was also observed in pyramidal cells in a rat neocortical slice.  相似文献   

14.
Neuronal cell death was studied in the developing retina of the chicken embryo. One of the most characteristic indices of the form of cell death termed apoptosis is regular, apparently internucleosomal fragmentation of DNA. When retinae of eight to seventeen day old chicken embryos were dissected out and the DNA from this tissue size fractionated on agarose gels, fragmentation typical of apoptosis was observed on day ten. The maximal amount of fragmentation was reached around day eleven and twelve and declined from day 15 to 17. These findings correlate in time with previous histological data on retinal cell death and demonstrate for the first time the occurrence of DNA fragmentation typical of apoptosis in the developing nervous system.  相似文献   

15.
16.
In whole-mounts of Golgi stained rat retinae four cell types are described in the ganglion cell layer. Three of these cell types are considered to be analogous to the alpha, delta and gamma cells described in the cat retina by Boycott & W?ssle (1974). The fourth cell type is thoughtt to be a displaced amacrine cell. All the cell types described are present in all parts of the retina. There is no evidence for an increase in dendritic field size with increasing distance from the optic disk.  相似文献   

17.
18.
We recorded bursts of motor neuron activity from closer and opener mandibular nerves of isolated subesophageal ganglia (SOG) and compared them with the feeding motor pattern of intact Manduca larvae. Closer bursts recorded from isolated SOG lasted from 1 to 4s, interburst interval durations lasted from 2 to 49s, and within- and between-animal variability was great. In contrast, motor activity bursts (EMGs) measured from mandibular closer muscles of intact, feeding animals lasted 0.08 to 0.24s with interburst intervals of 0.26 to 0.57s. Variability both within and between animals was small. Bath application of 10(-4)M octopamine to the isolated SOG tended to increase frequency and reduce the duration of bursts, so that they became more like those recorded during feeding.  相似文献   

19.
The activity and distribution of reduced nico-tinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) in the nodose ganglion of normal and vagotomized guinea-pigs were examined by light and electron microscopy. Light microscopy confirmed a remarkable increase in the number of NADPH-diaphorase-reactive neurons in the nodose ganglion following unilateral cervical vagotomy. The increase was present at 5 days but became more prominent at 10 days and was sustained until at least 30 days after vagotomy when compared with the non-lesioned side. The NADPH-diaphorase reaction product was associated with the membrane of the rough endoplasmic reticulum, Golgi apparatus, mitochondria and nucleus of the nodose neurons. In animals killed 5 days post-operation, there was no noticeable degeneration in the nodose neurons. However, at 10 days, the mitochondria in some neurons appeared swollen and vacuolated with disrupted cristae. These changes were accentuated in some nodose neurons 20 and 30 days after vagotomy but there was no evidence of cell death. All the degenerating neurons exhibited NADPH-diaphorase activity. The increase in NADPH-diaphorase activity in the neuronal somata after vagotomy suggests that the enzyme is involved in either the retrograde degeneration or the recovery of the lesioned neurons. Received: 15 June 1995 / Accepted: 15 February 1996  相似文献   

20.
We recorded intracellular responses from cat retinal ganglion cells to sinusoidal flickering lights, and compared the response dynamics with a theoretical model based on coupled nonlinear oscillators. Flicker responses for several different spot sizes were separated in a smooth generator (G) potential and corresponding spike trains. We have previously shown that the G-potential reveals complex, stimulus-dependent, oscillatory behavior in response to sinusoidally flickering lights. Such behavior could be simulated by a modified van der Pol oscillator. In this paper, we extend the model to account for spike generation as well, by including extended Hodgkin-Huxley equations describing local membrane properties. We quantified spike responses by several parameters describing the mean and standard deviation of spike burst duration, timing (phase shift) of bursts, and the number of spikes in a burst. The dependence of these response parameters on stimulus frequency and spot size could be reproduced in great detail by coupling the van der Pol oscillator and Hodgkin-Huxley equations. The model mimics many experimentally observed response patterns, including non-phase-locked irregular oscillations. Our findings suggest that the information in the ganglion cell spike train reflects both intraretinal processing, simulated by the van der Pol oscillator, and local membrane properties described by Hodgkin-Huxley equations. The interplay between these complex processes can be simulated by changing the coupling coefficients between the two oscillators. Our simulations therefore show that irregularities in spike trains, which normally are considered to be noise, may be interpreted as complex oscillations that might carry information.To the memory of Prof. Otto-Joachim Grusser  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号