首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Voltage clamping with a single microelectrode.   总被引:6,自引:0,他引:6  
A technique is described which allows neurons to be voltage clamped with a single microelectrode, and the advantages of this circuit with respect to conventional bridge techniques are discussed. In this circuit, the single microelectrode is rapidly switched from a current passing to a recording mode. The circuitry consists of: (1) an electronic switch; (2) a high impedance, ultralow input capacity amplifier; (3) a sample-and-hold module; (4) conventional voltage clamping circuitry. The closed electronic switch allows current to flow through the electrode. The switch then opens, and the electrode is in a recording mode. The low input capacity of the preamplifier allows the artifact from the current pulse to rapidly abate, after which time the circuit samples the membrane potential. This cycle is repeated at rates up to 10 kHz. The voltage clamping amplifier senses the output of the sample-and-hold module and adjusts the current pulse amplitude to maintain the desired membrane potential. The system was evaluated in Aplysia neurons by inserting two microelectrodes into a cell. One electrode was used to clamp the cell and the other to independently monitor membrane potential at a remote location in the soma.  相似文献   

2.
A highly sensitive, miniature, inexpensive circuit for the measurement of PO2 in vivo has been described. The circuit is constructed from a current-to-voltage convertor, clamping circuit, differential amplifier, and reverse voltage and overvoltage protector. The design of the circuit allows us to apply voltage bias to the measuring electrode while grounding the preparation. The clamping circuit holds the selected bias voltage constant while the differential amplifier subtracts this bias potential from the PO2 signal yielding an output voltage that is proportional to the current sensed by the oxygen electrode. The circuit is protected from reverse voltage and overvoltage.  相似文献   

3.
研究证明,传统膜片钳放大器在电流钳模式下记录到的快速电压信号会存在失真,且造成失真的根本原因是由于膜片钳的探头电路设计.为了克服这些缺陷重新设计了一种探头,新探头电路不仅能像传统的电压跟随器一样测量瞬态电压,而且适用于传统的电压钳工作模式.此外,一种命名为电压钳控制的电流钳技术被应用来改进传统的膜片钳放大器.用可变的低通滤波器来调整电压钳模块的响应速度,从而在实现膜电位钳位的同时准确记录快速电压信号.桥平衡电路用来消除命令电流流过串联电阻时带来的电压误差.而传统膜片钳中的快电容补偿环节则被改进用来补偿电极分布电容和探头放大器输入电容并提高电流钳模式下系统的响应速度.细胞模型实验结果表明,改进后的膜片钳放大器能够满足电生理研究中快速电位变化测量的需要.  相似文献   

4.
Axon voltage-clamp simulations. A multicellular preparation.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

5.
目的和方法:采用大鼠海马脑片盲法膜片钳的全细胞记录技术,研究美国Axon公司生产的膜片钳系统(Axopatch放大器和pClamp软件)中几种漏减功能的意义和作用机制,重点对定标P/N漏减(Scaled P/N leak subtraction)、膜片钳放大器漏减以及Clampfit处理软件漏减功能的选择与使用进行分析与比较。结果:Clampex采样软件中的定标P/N漏减功能比P/N漏减功能的噪声要小;放大器漏减功能可漏减单一去极化电压幅度所诱发的漏电流,但不能同时对不同电压幅度系列去极化所产生的稳态漏电流进行追踪漏减;Clampfit漏减功能由于其设定只要膜两侧存在电位差就有漏电流产生,因而不适合在记录电压门控性离子通道电流时对稳态漏电流进行漏减。结论:在研究电压门控性离子通道的性质时,可采用P/N漏减功能或定标P/N漏减功能对稳态漏电流进行漏减,而Clampfit漏减功能是不合适的。  相似文献   

6.
After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution.  相似文献   

7.
Using the patch-clamp technique, we observed profound oscillations of the whole-vacuole outward current across the tonoplast of Mesembryanthemum crystallinum L. (common ice plant). These current oscillations showed a clear voltage dependence and appeared at membrane potentials more positive than 90–100 mV. This paper describes the oscillations in terms of two separate mechanisms. First, the Mesembryanthemum vacuolar membrane shows a negative slope conductance at membrane potentials more positive than 100–120 mV. The fact that the oscillations and the negative slope conductance show a similar threshold potential suggests that (part of) the same mechanism is involved in both phenomena. The second mechanism involved is the voltage drop across the series resistance. As a result, the potential actually experienced by the vacuolar membrane deviates from the command potential defined by the patch-clamp amplifier. This deviation depends in an Ohmic manner on the current magnitude. We suggest that the interplay of the negative slope conductance and the voltage drop across the series resistance can cause a positive feedback which is responsible for the current oscillations. Received: 30 April 1999/Revised: 9 September  相似文献   

8.
Supercharging: a method for improving patch-clamp performance.   总被引:5,自引:1,他引:4       下载免费PDF全文
Patch-clamp performance can be improved without altering the normal headstage configuration described by (Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, 1981, Pfluegers Arch. Eur. J. Physiol., 391:85-100). The "supercharging" method permits resolution of such fast events as calcium and sodium tail currents. Digital computer modeling and analog electronic simulation were used to identify appropriate shapes for the command voltage and the voltage applied to a capacitor tied to the input of the headstage. The voltage command pulse consists of a step with a brief (5-15 microseconds) rectangular spike on its leading edge. Spike amplitude is a function of the membrane capacitance and the access resistance. The spike drives current through the access resistance and speeds charging of the membrane capacitance, making it possible to complete a voltage step within 5-15 microseconds. Clamping speed is independent of the electrode and feedback resistance over a wide range. The second function of the patch clamp amplifier is current measurement, and good time resolution requires suppression of the capacity transient. This can be accomplished by applying an appropriately shaped voltage to the small capacitor tied to the input of the headstage. Series resistance compensation for ionic current transients does not interfere with supercharging. Although the focus of this paper is on whole cell recording, the supercharging concept may prove useful for single channel and bilayer recording techniques.  相似文献   

9.
Pigeon vestibular semicircular canal type II hair cells often exhibit voltage oscillations following current steps that depolarize the cell membrane from its resting potential. Currents active around the resting membrane potential and most likely responsible for the observed resonant behavior are the Ca++-insensitive, inactivating potassium conductance I A (A-current) and delayed rectifier potassium conductance I K. Several equivalent circuits are considered as representative of the hair cell membrane behavior, sufficient to explain and quantitatively fit the observed voltage oscillations. In addition to the membrane capacitance and frequency-independent parallel conductance, a third parallel element whose admittance function is of second order is necessary to describe and accurately predict all of the experimentally obtained current and voltage responses. Even though most voltage oscillations could be fitted by an equivalent circuit in which the second order admittance term is overdamped (i.e., represents a type of current with two time constants, one of activation and the other of inactivation), the sharpest quality resonance obtained with small current steps (around 20 pA) from the resting potential could be satisfactorily fit only by an underdamped term.  相似文献   

10.
Voltage-clamp experiments were performed on single bovine adrenal fasciculata cells in short-term primary culture using either standard (broken membrane) or perforated whole-cell patch clamp recording. The membrane current measured with the perforated method was dominated by a very stable transient outward current. By contrast, the transient outward current recorded using the standard method was unstable. The reversal potential of the transient outward current varied linearly with the logarithm of [K+] e with a slope of 47 mV per decade. The onset of activation was sigmoidal and was fitted with a power function where n= 4. Time constants ranged from 1 to 4 msec with a maximum at −25 mV. The steady-state activation curve spanned the voltage range −50 to +80 mV without reaching a clear maximum. During a pulse, the current decayed in a biexponential manner. Time constants τ1 and τ2 were voltage-dependent and ranged from 50 to 200 msec respectively for a voltage step at +50 mV. The steady-state inactivation was dependent on the conditioning pulse duration. Using short conditioning pulses (1.2 sec), the curve which spanned the voltage range −40 to −20 mV, was 15 mV more positive than that obtained with longer conditioning pulses (60 sec). Time constants of this ``very slow inactivation' process (τvs) determined for voltage steps at −60 and −50 mV were 15 and 10 sec respectively. A ``facilitation process' of the peak current was observed when the duration or the amplitude of conditioning pulses were increased in the voltage range −100 to −50 mV. Recovery from inactivation followed a biexponential time course which seemed a mixture of both inactivation processes. In some experimental conditions, isolated cells were able to produce overshooting action potentials. These results are discussed in relation with the membrane electrogenesis of this cell type. Received: 14 November 1994/Revised: 24 October 1995  相似文献   

11.
Polymorphic ciliates, like Tetrahymena vorax, optimize food utilization by altering between different body shapes and behaviours. Microstome T. vorax feeds on bacteria, organic particles, and solutes, whereas the larger macrostome cells are predators consuming other ciliates. We have used current clamp and discontinuous single electrode voltage clamp to compare electrophysiological properties of these morphs. The resting membrane potential was approximately ?30 mV in both morphs. The input resistance and capacitance of microstomes were approximately 350 MΩ and 105 pF, whereas the corresponding values for the macrostomes were 210 MΩ and 230 pF, reflecting the larger cell size. Depolarizing current injections elicited regenerative Ca2+ spikes with a maximum rate of rise of 7.5 Vs?1 in microstome and 4.7 Vs?1 in macrostome cells. Depolarizing voltage steps from a holding potential of ?40 mV induced an inward Ca2+ ‐current (Ica) peaking at ?10 mV, reaching approximately the same value in microstome (?1.4 nA) and macrostome cells (?1.2 nA). Because the number of ciliary rows is the same in microstome and macrostome cells, the similar size of ICa in these morphs supports the notion that the voltage‐gated Ca2+ channels in ciliates are located in the ciliary membrane. In both morphs, hyperpolarizing voltage steps revealed inward membrane rectification that persisted in Na+‐free solution and was only partially inhibited by extracellular Cs+. The inward rectification was completely blocked by replacing Ca2+ with Co2+ or Ba2+ in the recording solution, and is probably due to Ca2+ ‐activated inward K+ current secondary to Ca2+ influx through channels activated by hyperpolarization.  相似文献   

12.
Studying neurons from an energy efficiency perspective has produced results in the research literature. This paper presents a method that enables computation of low energy input current stimuli that are able to drive a reduced Hodgkin–Huxley neuron model to approximate a prescribed time-varying reference membrane voltage. An optimal control technique is used to discover an input current that optimally minimizes a user selected balance between the square of the input stimulus current (input current ‘energy’) and the difference between the reference voltage and the membrane voltage (tracking error) over a stimulation period. Selecting reference signals to be membrane voltages produced by the neuron model in response to common types of input currents i(t) enables a comparison between i(t) and the determined optimal current stimulus i*(t). The intent is not to modify neuron dynamics, but through comparison of i(t) and i*(t) provide insight into neuron dynamics. Simulation results for four different bifurcation types demonstrate that this method consistently finds lower energy stimulus currents i*(t) that are able to approximate membrane voltages as produced by higher energy input currents i(t) in this neuron model.  相似文献   

13.
Summary Nonstationary electric currents are described which are generated by the Na,K-pump. Flat membrane sheets 0.2–1 m in diameter containing a high density of oriented N,K-ATPase molecules are bound to a planar lipid bilayer acting as a capacitive electrode. In the aqueous phase adjacent to the bound membrane sheets, ATP is released within milliseconds from an inactive, photolabile precursor (caged ATP) by an intense flash of light. After the ATP-concentration jump, transient current and voltage signals can be recorded in the external circuit corresponding to a translocation of positive charge across the pump protein from the cytoplasmic to the extracellular side. These electrical signals which can be suppressed by inhibitors of the Na,K-ATPase require the presence of Na+ but not of K+ in the aqueous medium. The intrinsic pump currentI p (t) can be evaluated from the recorded current signal, using estimated values of the circuit parameters of the compound membrane system.I p (t) exhibits a biphasic behavior with a fast rising period, followed by a slower decline towards a small quasistationary current. The time constant of the rising phase ofI p (t) is found to depend on the rate of photochemical ATP release. Further information on the microscopic orgin of the current transient can be obtained by double-flash experiments and by chymotrypsin modification of the protein. These and other experiments indicate that the observed charge-translocation is associated with early events in the normal transport cycle. After activation by ATP, the pump goes through the first steps of the cycle and then enters a long-lived state from which return to the initial state is slow.  相似文献   

14.
Voltage-clamp of excitable membrane allows the measurement of membrane currents associated with electrical potential changes across the membrane. However, it has been impossible in practice to apply the conventional analog feedback voltageclamp circuits to single electrode voltage clamping in central neurons. The reason for this is that the feedback system becomes unstable because of the positive feedback required for compensation of capacitative loss through the wall of the microelectrode. Park et al. (1981) proposed a new iterative technique to solve this problem. It requires that the potential to be clamped repeats itself with little or no change. The amount of current needed to clamp the membrane potential is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Since the feedback loop is open in real time, the system has great stability, and this advantage can be exploited in single electrode preparations. The computation algorithm which calculates the current waveform based on the voltage deviation during the last trial is the central part of the iterative voltage-clamp system. In this paper, we propose a new algorithm, which has several theoretical and practical advantages over the original one proposed by Park et al. First, two parameters used in the new algorithm are predetermined by a current-clamp experiment. Second, the speed of convergence of the new algorithm is faster than that of the Park's original algorithm. This was shown by computer simulation of iterative voltage clamp of artificial membrane following Hodgkin-Huxley equations for squid axon membrane and Rall's compartment model for a neuron with dendrites. Finally, we offer proof that the new algorithm is certain to converge for the general cases of voltage-clamp experiments with active membrane properties, synaptic membranes, etc. Consequently, the new algorithm for iterative voltage clamp is very suitable for single electrode voltage clamp in the central neurons. The new algorithm has been successfully applied to voltage-clamp experiments on rubrospinal neurons of cats (Tsukahara, Murakami, Kawato, Oda, and Etoh, in preparation).  相似文献   

15.
Summary Antennal styloconic thermo-hygro sensilla of Antheraea were studied with DC-coupled transepithelial recordings. — The transepithelial voltage changed by about 2 mV · °C–1. The spike frequency of the cold cell reached 300 Hz at the onset of negative temperature steps, but only 30 Hz at static temperatures (as with metal electrodes). The cold cell spikes showed a brief afterhyperpolarization that increased with temperature. The spikes of the cold- and warm-stimulated cells facilitated each other at low temperature. Mechanical stimuli (push against the sensillum, hydrostatic pressure of < ± 50 kPa, ultrasonic vibrations 120 kHz) modified the responses of the cold- and the warm-stimulated cells. Latency of cold cell responses to ultrasonic stimulation was occasionally less than 3 ms. — The impulse frequencies of the warm and the cold cells depend on the temperature and the magnitude of temperature change. When the firing rate is high enough by either or both of these parameters, it can be forced still higher by application of clamp current (outside positive). The higher the firing rate prior to clamping, the greater the effect of the current. — By analogy with sensilla for other modalities, this relationship between frequency and clamp current strongly suggests that stimulus-dependent changes in the conductance of dendritic membranes control the excitation of the warm and cold cells.Abbreviations DC direct voltage - TER transepithelial slope resistance between recording electrode and reference electrode in the hemolymph - NTC thermistor with negative temperature coefficient - TEV transepithelial voltage between electrodes - THS thermo-hygro sensillum  相似文献   

16.
The reversal potential for the EPSP in the squid giant synapse has been studied by means of an intracellular, double oil gap technique. This method allows the electrical isolation of a portion of the axon from the rest of the fiber and generates a quasi-isopotential segment. In order to make the input resistance of this nerve segment as constant as possible, the electroresponsive properties of the nerve membrane were blocked by intracellular injection of tetraethylammonium (TEA) and local extracellular application of tetrodotoxin (TTX). Thus, EPSP''s could be evoked in the isolated segment with a minimal amount of electroresponsive properties. The reversal potential for the EPSP (EEPSP) was measured by recording the synaptic potential or the synaptic current during voltage clamping. The results indicate that EEPSP may vary from +15 to +25 mV, which is more positive than would be expected for a 1:1 conductance change for Na+ and K+ (approximately -15 mV) and too negative for a pure Na+ conductance (+40 mV). This latter value (E Na) was directly determined in the voltage clamp experiments. The results suggest that the synaptic potential is probably produced by a permeability change to Na+ to K+ in a 4:1 ratio. No change in time-course was observed in the synaptic current at clamp levels of -100 and +90 mV. The implications of a variable ratio for Na+-K+ permeability in subsynaptic-postsynaptic membranes are discussed.  相似文献   

17.
The design and circuitry of solid electrodes of the Clark type for the determination of oxygen dissolved in microbial cultures and the suitable techniques are described. For the electrodes a portable battery instrument with an amplifier and recorder was developed. The electrode materials tested were: Au, Pt, Ag (cathode) and Ag/Ag2O and Ag/AgCl (anode). The effect of the presence of carbon dioxide on the course of the polarographic curves was determined. The temperature effect was determined for various membrane materials and its compensation with a thermistor was investigated. The effect of the circuit and design of the electrodes on stability, response time, reproducibility of measurement, durability of the electrodes and applicability in microbiology are discussed.  相似文献   

18.
U. Zimmermann  R. Benz  H. Koch 《Planta》1981,152(4):352-355
The membrane are of giant algal cells of Valonia utricularis was determined electrically by using the charge-pulse technique. The membrane was charged to low voltages between 2 and 20 mV by injecting charge pulses of defined amplitude and very short duration (about 100 ns). The injected charge was calculated by measuring the current increment via a potential drop across a 10 resistance in the outer circuit and by considering the preselected charging time. The initial voltage across the membrane was calculated by extrapolation to time zero (=end of the charge pulse). From the values of the injected charge and the voltage built up initially across the membrane, the capacitance of the membrane could be calculated. Assuming that the specific capacity of the two membranes, tonoplast and plasmalemma, arranged in series was 0.5 F cm-2, the membrane area could be derived from the membrane capacity. The electrically determined membrane area agrees with the geometrically determined one to within 10%.  相似文献   

19.
A novel electrochemical method, termed flash chronopotentiometry (FCP), is used to develop a rapid and sensitive method for detecting protease activities. In this method, an appropriate current pulse is applied across a polycation-selective polymer membrane to induce a strong flux of the polycationic peptides from the sample phase into the organic membrane of the electrode. During this current pulse, the cell potential (EMF) is monitored continuously, and is a function of the polypeptide concentration. The imposed current causes a local depletion of the polypeptide at the sample/membrane interface, which yields a drastic potential change in the observed chronopotentiogram at a characteristic time, called the transition time (τ). For a given magnitude of current, the square root of τ is directly proportional to the concentration of the polypeptide. Proteases cleave polypeptides into smaller fragments that are not favorably extracted into the membrane of the sensor. Therefore, a decrease in the transition time is observed during the proteolysis process. The degree of change in the transition time can be correlated to protease activity. To demonstrate this approach, the activities of trypsin and α-chymotrypsin are detected using protamine and synthetic polycationic oligopeptides that possess specific cleavage sites that are recognized by these proteases.  相似文献   

20.
An equivalent electrical circuit is given for a branch of an amphibian motor-nerve terminal in a volume conductor. The circuit allows for longitudinal current flow inside the axon as well as between the axon and its Schwann cell sheath, and also for the radial leakage of current through the Schwann cell sheath. Analytical and numerical solutions are found for the spatial and time dependence of the membrane potential resulting from the injection of depolarizing current pulses by external electrodes at one or two separate locations on the terminal. These solutions show that the depolarization at an injection site can cause a hyperpolarization at sites a short distance away. This effect becomes more pronounced in a short terminal with sealed-end boundary conditions. The hyperpolarization provides a possible explanation for recent experimental results, which show that the average quantal release due to a test depolarizing current pulse delivered by an electrode at one site on a nerve terminal is reduced by the application of an identical conditioning pulse at a neighbouring site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号