首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Destruction, by electrocoagulation, of the median neurosecretory cells of the pars intercerebralis of 2-day old adult female Locusta migratoria completely suppressed normal juvenile hormone-biosynthetic activity of the corpora allata in most animals. For example, 6 days after electrocoagulation the rates of spontaneous juvenile hormone biosynthesis, measured by radiochemical assay of freshly isolated glands, showed a median value of less than 1100 that of the corresponding sham operated controls, which were then in mid-vitellogenesis. Injection of graded doses (200–1600 μg) of precocene I at this time, followed by assays five days later, resulted in a similar decline of both corpus allatum volume and precocene epoxidase activity (measured by radiochemical assays of precocene I dihydrodiol formation in vitro) in pars intercerebralis-coagulated and sham-operated animals, when expressed as a percentage of their own zero precocene controls. Electrocoagulation of the pars intercerebralis largely prevented the normal increase in both corpus allatum volume and its epoxidase activity, so that by age 13 days these parameters were about 2.5-fold lower in coagulated vs control (sham operated) animals. In fact, electrocoagulation had no marked effect on the value of epoxidase activity per unit corpus allatum volume. It is concluded that the corpora allata from this species and stage are sensitive to precocene irrespective of whether they are active in biosynthesis of juvenile hormone.  相似文献   

2.
The Egyptian locust, Anacridium aegyptium, has four protocerebral neurosecretory centres: the A to B neurosecretory cells of the pars intercerebralis (the A cells are rich in fuchsinophil material and the B cells are devoid of fuchsinophil neurosecretion), the voluminous C neurosecretory cells poor in neurosecretion, and the median sub-ocellar neurosecretory cells.From September to the beginning of January, imaginal diapause is characterized by an accumulation of the median neurosecretion in the pars intercerebralis-corpora cardiaca system, by small corpora allata, and, in the female, by a stop in oöcyte development although the male's sexual activity is still not altered. Allatectomy suppresses neither the male's sexual behaviour nor its fecundity. From January, the increase of the photoperiod causes a release of the median neurosecretion in both sexes, an increase of the volume of the corpora allata, and breaks ovarian diapause.In autumn, the implantation of the male's or female's corpora allata of Anacridium does not stimulate ovarian growth of diapausing females. On the contrary, the implantation of corpora allata or of pars intercerebralis or of corpora cardiaca of Locusta migratoria migratorioides (locust without diapause) causes ovarian development of the diapausing females of Anacridium. Thus, in the two sexes of the Egyptian locust, the corpora allata are inactive during the female ovarian diapause. The imaginal diapause of Anacridium affects both sexes (stocking of median neurosecretion, arrest of the corpora allata). If diapause does not seem to affect the male's development, it is because its sexual activity is free from the pars intercerebralis and corpora allata.The corpora allata of Anacridium show a sexual dimorphism in the active adult: they are smaller in the male and have more mitosis in the female. An explanation of this dimorphism is advanced.  相似文献   

3.
《Insect Biochemistry》1985,15(2):175-179
The effect of varying l-methionine (l-met) concentration on rates of juvenile hormone (JH) biosynthesis/release by corpora allata of females of the viviparous cockroach Diploptera punctata has been studied using a radiochemical assay. Both high activity glands (corpora allata from day 5 females) and low activity glands (corpora allata from day 11 females) were used to study the dose dependence of JH biosynthesis on l-met concentrations, under both de novo (spontaneous) conditions of JH biosynthesis and stimulated conditions (in the presence of the exogenous JH III precursor farnesoic acid). Maximal rates of JH biosynthesis/release were observed at l-met concentration of 20 μM (spontaneous) and 40 μM (stimulated). Below these concentrations, rates of JH biosynthesis declined linearly with decreasing l-met concentration. Optimal concentration of l-met appeared to be similar for both high and low activity corpora allata, under spontaneous and stimulated conditions of biosynthesis. Above 40 μM l-met, no increase in rates of JH biosynthesis was observed. It appears that the corpora allata of D. punctata are efficient scavengers of l-met and are able to utilize even low concentrations of the substrate for JH biosynthesis. The corpora allata of D. punctata may prove useful for the biosynthesis of authentic JH III, radiolabelled in the methyl position using as methyl donor, l[methyl-3H]met of high specific activity.  相似文献   

4.
S S Tobe  G E Pratt 《Life sciences》1975,17(3):417-422
We have compared, on an individual basis, the volume of the corpora allata with their ability to synthesize and release juvenile hormone (JH) using glands taken at daily intervals throughout the period of sexual maturation and the first two ovarian cycles in Schistocerca gregaria. A standard in vitro radiochemical assay was used to measure the rates of both spontaneous JH biosynthesis from [methyl-14C]-methionine, and of JH biosynthesis stimulated by optimal concentrations of [C-2 3H]-farnesenic acid. Computation of results showed that there are, during this period, changes of up to 250-fold in the rate of spontaneous JH biosynthesis per unit volume corpora allata. It is concluded that the volume of the corpora allata is of no value as an indicator of the spontaneous synthetic activity of the glands in this species, and that the overall rate of JH synthesis is regulated by mechanisms that do not involve large changes in the volume of the gland cells. However, in the presence of farnesenic acid, there is a corelation between stimulated JH synthesis and glandular volume, suggesting that the volume of the gland reflects the maximum activity of the final two stages in JH biosynthesis.  相似文献   

5.
The O-methyltransferase, which is responsible for the methylation of farnesoic acid in the corpora allata of Diploptera punctata, is a cytosolic enzyme. The activity of O-methyltransferase closely parallels JH biosynthesis in last instars and adult females. Because allatostatin 4 (AST 4) from D. punctata and callatostatin 5 (CAST 5) from Calliphora vomitoria can inhibit juvenile hormone biosynthesis, their effects on the activity of O-methyltransferase and epoxidase, the enzymes involved in the final two steps of juvenile hormone biosynthesis, were investigated in vitro. AST 4 can inhibit methyltransferase activity whereas CAST 5 stimulates it. AST 4 inhibits epoxidase activity slightly whereas CAST 5 inhibits it significantly (36%). Treatment of corpora allata with farnesoic acid (40 μM) can reverse the inhibitory effect of AST 4 and CAST 5 on JH release by corpora allata. Thus, allatostatins appear to exert their inhibitory effect on JH biosynthesis at least partially through inhibition of the activity of terminal enzymes. Two biosynthetic pathways for the conversion of farnesoic acid to JH may exist in corpora allata of D. punctata: the predominant pathway is farnesoic acid to methyl farnesoate, then to JH whereas the other, representing about 5–10% of total JH production, is farnesoic acid to JH III acid, then to JH.  相似文献   

6.
At eclosion, the ovaries of female Corn earworm Heliothis zea do not contain mature eggs. Virgin-unfed females produced approximately 400 mature eggs in 8 days; mating or feeding doubled this number, and mating plus feeding more than tripled it. Females allatectomized or decapitated at day O matured few eggs. Egg production was restored by implantation of active corpora allata (CA) or by treatment with the juvenile hormone (JH) analogue methoprene at day 0. 20-Hydroxyecdysone, on the other hand, had no effect. Females in which the CA had been denervated or in which the median neurosecretory cells of the brain had been ablated at day O produced fewer eggs than sham-operated animals. These results indicate that egg maturation is controlled by JH and that continuous input from the brain is required for sustained CA activity for maintaining a high rates of egg maturation.The rate of JH biosynthesis by CA in vitro was determined with a radiochemical assay. The major hormones produced were JH-II and JH-III with small quantities of JH-I. The rates of JH synthesis were similar in all experimental groups which may indicate that the in vitro rate of JH synthesis does not reflect the actual state of CA activity in the female.  相似文献   

7.
The implantation of active corpora allata into intact Locusta females during growth accelerates pre-vitellogenic oöcyte growth and vitellogenesis. Localised stimulation of yolk deposition follows the implantation of active corpora allata between the ovarioles demonstrating a gonadotrophic rôle for the corpus allatum hormone. Electrocoagulation of the median neurosecretory cells of the brain prevents vitellogenesis whilst pre-vitellogenic oöcyte growth occurs normally. Implantation of active corpora allata into females with ablated cerebral neurosecretory cells promotes vitellogenesis in a proportion of test animals although mature oöcytes are never produced.It is suggested that the rôle of the median neurosecretory cells during egg development in Locusta is primarily concerned with the activation and maintenance of activity of the corpora allata. The corpus allatum hormone acts both metabolically and gonadotrophically.  相似文献   

8.
Exogenous farnesol or farnesoic acid (FA) stimulates juvenile hormone III (JH III) biosynthesis by isolated corpora allata from Locusta migratoria in a dose-dependent manner. Farnesol and FA also stimulate a dose-dependent accumulation of substantial amounts of methyl farnesoate (MF), identified by gas chromatography-mass spectroscopy (GCMS) analysis, in the corpora allata. Lower quantities of MF were found in the incubation medium. Corpora allata, denervated 2 days prior to assay, showed low spontaneous rates of JH biosynthesis which were stimulated by farnesol and FA. The dose-response curves for control and denervated corpora allata were similar. During oocyte maturation the rate of farnesol and FA stimulation of JH biosynthesis increased gradually. However, after transection of nervus corporis allati 1 (NCA-1), the rate of stimulated JH synthesis was maintained at preoperative levels. Although the spontaneous rate of JH biosynthesis decreased rapidly after NCA-1 transection, denervated glands could still be stimulated by farnesol or FA to produce large amounts of JH. These results suggest that the low spontaneous rate of JH biosynthesis in denervated corpora allata is not caused by inhibition of the final steps of JH biosynthesis.  相似文献   

9.
The comparative activity of C-16 and C-18 juvenile hormones is studied in Locusta migratoria on four well-known physiological functions of the corpora allata by means of a single injection of a solution of hormone in oil at doses of 50, 100, and 200 μg/animal. Judged on morphogenesis and pigmentation, JH-I (C-18 JH) as well as JH-III (C-16 JH) show a real juvenilizing effect. The potency of JH-I is much higher than that of JH-III because the first hormone only produces supernumerary larvae and most modified green animals. JH-I counterbalances exactly the lack of CA on the gonadotropic function whereas JH-III allows only about 50 per cent development of oöcytes. The cardiotropic activity of JH-I is similar to that of the CA. The C-18 juvenile hormone is until now the only studied ‘juvenilizing’ compound which increases the heartbeat. JH-III appears to have no noticeable effect on the heart.These results combine to prove that only JH-I has an activity similar to the Locusta corpora allata on morphogenesis, pigmentation, ovarian maturation, and the cardiac activity of L. migratoria.  相似文献   

10.
Park CW  Kim JH  Kim KM  Hwang JS  Kang SW  Kang HS  Cho BP  Yu CH  Kim HR  Lee BH 《Peptides》2004,25(11):1891-1897
Brain-derived neurotrophic factor-like neuropeptide is produced in the brain of the silk moth, Bombyx mori. Immunocytochemical studies of brain and retrocerebral complex of larvae, prepupae, pupae and adults showed that four pairs of median neurosecretory cells and six pairs of lateral neurosecretory cells which had different immunoreactivities to BDNF peptide. Day-1 adult brains showed no evidence of neurons stained by anti-BDNF antibodies. Those reactivities, which were much stronger in median cells than in lateral cells, were the weakest in an earliest larval stage and a latest pupal stage but the strongest in late larval stage. Median neurosecretory cells projected their axons into the contralateral corpora allata by decussation in the median region, nerve corpora cardiaca (NCC) I, and nerve corpora allata (NCA) I, whereas lateral neurosecretory cells extended their axons to the ipsilateral corpora allata via NCC II and NCA I.  相似文献   

11.
Juvenile hormone (JH) is considered the prime endogenous signal for the induction of queen development in honey bees (Apis mellifera L.). At the beginning of the last (5th) larval stadium, worker corpora allata synthesize less JH than queen corpora allata as a consequence of a limited production of JH precursors and a caste- and stage-specific block of the terminal step in JH biosynthesis. As previously shown, the Manduca sexta allatotropin stimulates JH biosynthesis in honey bee corpora allata in a dose-dependent and reversible manner, but can not overcome the stage-specific block in the terminal step of JH biosynthesis that is typical for worker early 5th instars. In experiments with M. sexta allatotropin and with the JH precursor farnesoic acid, we found characteristic stage-specific differences in their effects on JH biosynthesis. From the end of the spinning stage on, corpora allata could be stimulated by farnesoic acid to a much higher extent than in earlier developmental stages, suggesting a sudden increase in epoxidase activity. Manduca sexta allatotropin, however, stimulated corpora allata activity until the end of the spinning stage, at which time the corpora allata become suddenly insensitive. These data suggest that in worker larvae, important changes in the regulation of the terminal enzymatic steps in JH biosynthesis occur at the transition from the spinning stage to the prepupal stage. However, the analysis of in vitro activities of the involved enzymes, O-methyltransferase and methyl farnesoate epoxidase, remained inconclusive.  相似文献   

12.
The aim of this study was to investigate the secretion of brain‐derived neurotrophic factor (BDNF)‐like neuropeptide in the silkworm, Bombyx mori , by using immunocytochemical techniques on the brain and retrocerebral complex of fifth instar larvae. In the brain, four pairs of median neurosecretory cell (MNC) bodies and six pairs of lateral neurosecretory cell (LNC) bodies had distinct immunoreactivities to this peptide, suggesting that this peptide is produced from two types of brain neuron. These reactivities were much stronger in the MNC than in the LNC. Labeled MNC projected their axons into the contralateral corpora allata, to which axons of labeled MNC were eventually innervated, through decussation in the median region, contralateral nerve corporis cardiaci I and nerve corpora allata I. Labeled LNC extended their axons into the ipsilateral corpora allata to be innervated through the ipsilateral nerve corporis cardiaci II and nerve corpora allata I. These results suggest that BDNF is secreted as a neurohormone from MNC and LNC of the brain into the corpora allata.  相似文献   

13.
Summary

The nervous part of the locust corpora cardiaca (NCC) was extracted using 70% methanol and subjected to fast protein liquid chromatography (FPLC). Twenty fractions were collected and injected into females from the end of the IIIrd larval instar to day-12 of the adult life to screen the effects on metamorphosis, body pigmentation, and oocyte growth. The rate of juvenile hormone (JH) biosynthesis by the corpora allata of injected animals was evaluated in vitro. One fraction was found to stimulate ovarian maturation, and 3 to delay oocyte growth. None of them disturbed (i) either metamorphosis and body color (which are JH dependent), or (ii) rate of JH biosynthesis. Of the 3 fractions which inhibited ovarian maturation, 2 of them were identified as the neuroparsins A and B. The results clearly illustrate that antagonist factors from the brain are involved in the regulation of ovarian maturation in the locust.  相似文献   

14.
In adult female cockroaches, the ovary greatly affects the synthesis of Juvenile Hormone (JH) by the corpora allata, and in females of some cockroach species, removal of the ovaries results in a permanent depression of JH synthesis. We report that the corpora allata in ovariectomised, adult virgins of the German cockroach, Blattella germanica (L.), increase and then decrease in activity, as they do in intact females. Moreover, the distal tubules in the left colleterial glands of ovariectomised females accumulate abundant protein, the production of which is regulated by JH. In both ovariectomised and sham‐operated females, the activity of the corpora allata more than tripled between days 1 and 4 of adulthood, during which the oöcytes of sham‐operated females grew considerably in length. The corpora allata of sham‐operated females produced even more JH on day 7, but very little on day 10, by which time all females had oviposited. The glands of ovariectomised females, by constrast, produced a similar amount of JH on day 7 as on day 4, but much less on day 10. Beginning on day 13, the activity of the corpora allata increased again in ovariectomised females, an increase that did not occur until day 22 in sham‐operated females. Mating of ovariectomised females on day 6 resulted in a significant increase in the activity of the corpora allata by day 10. We conclude that both the ovary and mating stimulate the synthesis of JH early in the reproductive cycle, but that neither is needed for the occurrence of a complete cycle of JH synthesis.  相似文献   

15.
Brain-retrocerebral complexes of female crickets,Gryllus bimaculatus andAcheta domesticus, treated with antibody to allatostatin-1 from a cockroach,Diploptera punctata, show extensive immunoreactivity. The results suggest that allatostatins or allatostatin-like molecules are produced in neurosecretory cells of the brain and are delivered to the corpora allata through nervous connections and/or via haemolymph. Radiochemical measurements of juvenile hormone III biosynthesis by isolated corpora cardiaca-corpora allata complexes from adultG. bimaculatus have been used to demonstrate an in vitro sensitivity of these glands to allatostatin-1 fromD. punctata. Allatostatin-1 is a relatively potent inhibitor of juvenile hormone III biosynthesis in corpora allata of both young adult females and males. In glands taken from 3-day virgin females, 50% inhibition of hormone biosynthesis is reached at ca. 3 nmol·l-1 allatostatin-1. The inhibitory action of allatostatin-1 is rapid, dose-dependent and reversible. Addition of 200 mol·l-1 farnesol to the incubation medium prevents inhibition of juvenile hormone III biosynthesis by allatostatin-1. Juvenile hormone III biosynthesis by isolated corpora allata of 3-day female house crickets,A. domesticus, is also susceptible to inhibition by 1 mol·l-1 allatostatin-1.Abbreviations ASB2 Diploptera punctata allatostatin-5 - CA corpora allata - CC corpora cardiaca - Dip A-1 Diploptera punctata allatostatin-1 - HEPES 4-(2-hydroxyethyl)piperazine-1-ethanesulphonic acid - JH juvenile hormone(s) - Mas-AS Manduca sexta allatostatin - MF methyl farnesoate - NCA nervus corporis allati - NCC nervus corporis cardiaci - SEM standard error of mean - TRIS Tris(hydroxymethyl)aminomethane  相似文献   

16.
To study the effect of brain signals on the biosynthesis of juvenile hormone by the corpora allata of the grey fleshfly Neobellieria bullata, exposed corpora allata connected to the brain were surgically removed from sugar-fed flies and incubated in vitro with L -[3H-methyl]methionine. After incubation, the media together with the tissues were analyzed by HPLC. [3H]Juvenile hormone III (JH III), [3H]JH III bisepoxide (BE), [3H]methyl farnesoate (MF) and an unknown [3H]labeled metabolite (Un) were identified as the primary products. The rate of synthesis of [3H]JH III bisepoxide was higher than that of [3H]JH III, [3H]MF and [3H]Un. Two days after a liver meal, female flies synthesized more JH III, MF, BE, and the Un than did males. Synthesis of JH III, BE, and MF in females was lower during the previtellogenic, sugar-feeding period than during the vitellogenic liver-feeding period. Isolated corpus cardiacum–corpus allatum (CC-CA) complexes that were incubated in vitro synthesized less JH III, MF, and BE, as compared to complexes that were attached to the brain, indicating that the brain probably modulates the biosynthesis of JH III, MF, and BE in the corpora allata. Upon incubation of brain–CC–CA complexes with Neb-TMOF (10–8 M), Neb-colloostatin (10–8 M), ovarian, or brain extracts resulted in significant inhibition of JH III and BE biosynthesis in the presence of ovarian extracts. These results indicate that allatostatin-like factors are present in the ovary of the flesh fly. Arch. Insect Biochem. Physiol. 37:248–256, 1998. © 1998 Wiley–Liss, Inc.  相似文献   

17.
Juvenile hormone III biosynthesis by corpora allata of adult female Leucophaea maderae was measured by an in vitro radiochemical assay. In fed females, JH III synthesis increases more than 20-fold after mating to a peak of 55 pmol/pair/h on day 9 and then rapidly declines. This increase in JH III synthesis concomitant with rapid oocyte growth in mated females is not observed in virgin females. The corpora allata from starved, virgin females appear to be inactive. The addition of 150 microM 2E,6E-farnesol (a) JH III precursor) to the incubation medium stimulates the corpora allata from starved, virgin females less than the corpora allata from starved, mated females. Both feeding and mating are necessary for the expression of a normal cycle of JH III synthesis in this cockroach.  相似文献   

18.
ABSTRACT. Incubation conditions were established for a short-term radiochemical assay of spontaneous juvenile hormone (JH) biosynthesis in vitro by corpora allata from adult female Gryllus bimaculatus. The only JH synthesized was shown by HPLC to be JH III. A further incubation product, predominantly extracted from the corpora allata, was thought to be the JH III precursor, methyl farnesoate. In adult females reared at a constant temperature of 27°C the synthetic activities of the corpora allata-corpora cardiaca complexes in vitro increase from almost zero to a high peak value 4 days after the imaginal moult. Thereafter the activity decreases to varying intermediate levels, but always lower than the first maximum. Two days after the first peak in corpus allatum activity, ovarian fresh weight increases dramatically and the first oviposition occurs 2 days later.
Topical application of JH III to females reared at 20°C, which usually have a low fecundity, causes a dose-dependent stimulation of egg production and oviposition.  相似文献   

19.
The developmental expressions of the mRNA of JH synthetic enzymes have been studied using homogenates of the corpora cardiaca-corpora allata (CC-CA) complexes in Bombyx mori [Kinjoh, T., Kaneko, Y., Itoyama, K., Mita, K., Hiruma, K., Shinoda, T., 2007. Control of juvenile hormone biosynthesis in Bombyx mori: cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochemistry and Molecular Biology 37, 808-818]. The in situ hybridization analyses in the CC-CA complex showed that the distribution of the mRNAs of all the mevalonate enzymes and juvenile hormone (JH) acid O-methyltransferase occurred only in the CA cells, indicating that the fluctuations of the enzyme mRNA amounts in the CC-CA complexes were derived solely from the CA. In addition, the size of the CA and their nuclei was not associated with the JH synthetic activity by the CA until the pharate adult. Only female adult CA synthesized JH in B. mori, and the CA and the nuclei were significantly larger than those of male CA which do not synthesize JH.  相似文献   

20.
The activity of the substance(s) which are contained in the cephalic endocrine organs of the locust which induce egg diapause in Bombyx mori was examined by implantation and injection of saline extracts of these organs. Extracts from the median and lateral neurosecretory parts of the locust brain were not effective in inducing egg diapause. Extracts of the corpora cardiaca, corpora allata, and suboesophageal ganglion of the locust induced diapause eggs in Bombyx pharate adults from which the suboesophageal ganglion had been removed. The first two extracts could induce egg diapause even in isolated abdomens of pharate adults of Bombyx. In the locust corpora cardiaca, the activity was present only in the glandular lobe and not in the nervous region. This activity decreased when the nervi corporis cardiaci I and II and of nervi corporis allati I were cut. Allatectomy also brought about a decrease in the activity in the glandular lobe which could not be restored by the injection of juvenile hormone. The activity in the corpora allata was enhanced slightly by the disconnection though not significantly.From these results, it is assumed that the corpora cardiaca, corpora allata and suboesophageal ganglion of the locust contain and active principle(s) capable of inducing egg diapause in Bombyx mori. The nervous connections between the brain, corpora cardiaca, and corpora allata are essential for the accumulation of the active substance(s) in the glandular lobes of the corpora cardiaca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号