首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An apparatus was devised which utilizes local cooling to reversibly interrupt the axonal transport of dopamine-beta-hydroxylase (DBH) in rabbit sciatic nerves in vitro. Lowering the temperature of a short region of nerve to between 1 and 3 degrees C, while keeping the remainder at 37 degrees C, caused DBH activity to accumulate in and proximal to the cooled region. This accumulation was evident after 0.5 hr of cooling and increased in a nearly linear fashion with time for about 3 hr. The cooling-induced interruption in transport was rapidly reversed when nerves were rewarmed to 37 degrees C. Upon rewarming after local cooling for 1.5 hr, a peak of accumulated DBH activity migrated toward the distal end of the nerve at a velocity of 300 +/- 17 mm/day. This velocity was maintained for as long as the peak could be followed and was four times greater than the average velocity estimated from the rate of accumulation of DBH activity above a ligature at the distal end of these same nerves. It is concluded that ligation experiments grossly underestimate the true velocity of axonal transport of DBH and that the present technique offers great advantages in permitting direct study of the migration of separate axonal compartments of transported materials.  相似文献   

2.
Stop-flow techniques were used to examine the rapid axonal transport of norepinephrine in rabbit sciatic nerves. When the midpoint of a nerve incubated in vitro was cooled to 2°C while the remainder was kept at 37°C, norepinephrine accumulated proximal to the cooled region at a rate corresponding to an average transport velocity between 5 and 6 mm/hr in a distal direction. Since only about half of the norepinephrine appeared to be free to move, the mean velocity of the moving fraction was probably twice as great. No norepinephrine accumulated distal to a broad cooled region under conditions in which there would have been a significant accumulation of dopamine-β-hydroxylase activity. Therefore, unlike dopamine-β-hydroxylase, norepinephrine may not be subject to rapid retrograde transport. When nerves that had been locally cooled for 1.5 hr were rewarmed uniformly to 37°C, a wave of norepinephrine moved exclusively in a distal direction. The peak of this wave moved at a velocity of 12.2 ± 0.5 mm/hr or 293 ± 12 mm/day; the front of the wave moved at about 18 mm/hr. or 430 mm/day; and the tail probably moved faster than 6 mm/hr. This spectrum of velocities was virtually identical to the one displayed by the wave of dopamine-β-hydroxylase activity that was generated under the same conditions. Our results are consistent with the conclusion that all axonal structures containing norepinephrine also contain dopamine-β-hydroxylase, but they are not consistent with the converse.  相似文献   

3.
Stop-flow techniques were used to determine how temperature affected the axonal transport of dopamine-β-hydroxylase (DBH) activity in rabbit sciatic nerves in vitro. These nerves were cooled locally to 2°C for 1.5 hr, which caused a sharp peak of DBH activity to accumulate above the cooled region. Accumulated DBH was then allowed to resume migration at various temperatures. From direct measurements of the rate of migration, we found that the axonal transport velocity of DBH was a simple exponential function of temperature between 13°C and 42°C. Over this range of temperatures, the results were well described by the equation: V = 0.546(1.09)T, where V is velocity in mm/hr, and T is temperature in degrees centigrade. The Q10 between 13°C and 42°C was 2.33, and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 kcal. Transport virtually halted when temperature was raised to 47°C, although only about half of the DBH activity disappeared during incubation at this temperature. Another transition occurred at 13°C; below this temperature, velocity fell precipitously. This was not an artifact peculiar to the stop-flow system since the rate of accumulation of DBH activity proximal to a cold-block also decreased abruptly when the temperature above the block was reduced below 13°C.  相似文献   

4.
Stop-flow techniques were used to determine how temperature affected the axonal transport of dopamine-beta-hydroxylase (DBH) activity in rabbit sciatic nerves in vitro. These nerves were cooled locally to 2 degrees C for 1.5 hr, which caused a sharp peak of DBH activity to accumulate above the cooled region. Accumulated DBH was then allowed to resume migration at various temperatures. From direct measurements of the rate of migration, we found that the axonal transport velocity of DBH was a simple exponential function of temperature between 13 degrees C and 42 degrees C. Over this range of temperatures, the results were well described by the equation: V=0.546(1.09)T, where V is velocity in mm/hr, and T is temperature in degrees centigrade. The Q10 between 13 degrees and 42 degrees C was 2.33, and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 kcal. Transport virtually halted when temperature was raised to 47 degrees C, although only about half of the DBH activity disappeared during incubation at this temperature. Another transition occurred at 13 degrees C; below this temperature, velocity fell precipitously. This was not an artifact peculiar to the stop-flow system since the rate of accumulation of DBH activity proximal to a cold-block also decreased abruptly when the temperature above the block was reduced below 13 degrees C.  相似文献   

5.
The axonal transport of DOPA-decarboxylase (EC 4.1.1.26) was investigated in rabbit sciatic nerves by means of in vitro stop-flow techniques. Enzyme activity accumulated just proximal to a region that was locally cooled to 5°C in nerves that were elsewhere incubated at 37°C. The accumulation of enzyme activity was linear with time and corresponded to an average orthograde transport velocity of 11 mm/day. Retrograde transport was not detected. When nerves that had been locally cooled for 3 h were rewarmed, the accumulated enzyme activity moved distally along them as a wave with a narrow range of velocities. The front of this wave traveled at a rate of about 150mm/day, and the mean velocity of the wave was about 120 mm/day. These values are much lower than those previously obtained for tyrosine hydroxylase (EC 1.14.16.2), dopamine-β-hydroxylase (EC 1.14.2.1) and norepinephrine in similarly designed experiments. Thus DOPA-decarboxylase appeared to be transported at intermediate velocities, and, since the mean velocity of the moving fraction was about 11 times the average velocity, it is ljkely that only 9% of the enzyme was undergoing transport at any given moment.  相似文献   

6.
—The presence of phenylethanolamine-N-methyltransferase (EC 2.1.1.-) and dopamine-β-hydroxylase (EC 1.14.2.1) activities was demonstrated in the sciatic nerve of the toad, Bufo marinus. The rates of accumulation of phenylethanolamine-N-methyltransferase (PNMT) and dopamine-β-hydroxylase (DBH) proximal to a ligation of the sciatic nerve were studied. DBH accumulated proximal to the ligation at a more than 10-fold faster rate than PNMT. By measuring the rate of loss of enzyme activity distal to a ligation, an estimate of per cent clearance of each enzyme was made. Based on the per cent of enzyme activity free to move, the absolute transport rates for each enzyme were estimated to be: PNMT, 3.6 mm/24 h; DBH, 102 mm/24 h. PNMT activity (89 per cent) was recovered in the soluble fraction of sciatic nerve homogenates with no change occurring in the subcellular distribution of the enzyme proximal to ligations. In contrast, 43 per cent of DBH activity was found in the soluble fraction of sciatic nerve homogenates; but a disproportionate increase in paniculate DBH activity was found proximal to sciatic nerve ligations. Reduction of toad body temperature to 4°C resulted in a complete but totally reversible block of the axonal transport of both PNMT and DBH.  相似文献   

7.
—Administration of cycloheximide, 10 mg/kg s.c. led within 4 h to an approx 30% reduction of dopamine-β-hydroxylase (DBH) activity in the abdominal portion of rat sciatic nerves. At least two more hours elapsed before DBH activity in the distal part of these nerves began to fall. This pattern suggests reduced synthesis or delivery of DBH into axons but continued transport of previously delivered enzyme. Coinciding with the time at which DBH activity began to fall in distal segments of sciatic nerve, there was a marked reduction in the accumulation of DBH activity above a ligature in this region. Between 4 and 8 h after administration of cylcoheximide, 10 mg/kg, accumulation above a ligature was 70% less than in untreated nerves (P < 0.001), a reduction significantly greater (P < 0.05) than the accompanying 28% loss of baseline DBH activity. At the same time, the clearance of DBH activity from nerve regions distal to a ligature was greatly reduced. This pattern is consistent with the depletion of a minor but rapidly transported compartment of DBH. Six hours after administration of cylcoheximide, 10 mg/kg, the apparent subcellular distribution of DBH in distal regions of sciatic nerve was altered by a significant 36% loss in sedimentable DBH activity, with non-significant changes in othcr fractions. This suggests that rapidly transported DBH, depleted from the nerve by cycloheximide-induced inhibition of protein synthesis, is more highly associated with intraneuronal particles than is slowly transported or stationary DBH.  相似文献   

8.
Glyoxylic acid was used to induce fluorescence in sections of rabbit sciatic nerve. In fresh nerves treated with this agent there were scattered finely beaded axons with a weak blue-green fluorescence. During local cooling, blue-green fluorescence accumulated steadily at the proximal boundary of the cooled region but never at its distal boundary. This accumulation gave rise to dilated axons that often swelled into brilliantly fluorescent balloon-like structures up to 10 microgram in diameter. Axonal fluorescence was probably specific for norepinephrine, being enhanced by inhibition of the metabolism and diminished by inhibition of the synthesis or storage of this neurotransmitter. After local cooling of nerves for 1.5 hr, specific fluorescence was confined within 0.8 mm of the cooled region. Rewarming led to rapid removal of fluorescence from the cooled region and to disappearance of most of the balloon-like swellings. Simultaneously, rewarming caused brightly fluorescent fibers that were neither dilated nor swollen to appear in distal regions of nerve. As this wave of fluorescence migrated distally with increasing duration of rewarming, it was spread over increasingly broad regions of nerve, which suggests that axonal transport of norepinephrine may invole some kind of dispersive process.  相似文献   

9.
Glyoxylic acid was used to induce fluorescence in sections of rabbit sciatic nerve. In fresh nerves treated with this agent there were scattered finely beaded axons with a weak blue-green fluorescence. During local cooling, blue—green fluorescence accumulated steadily at the proximal boundary of the cooled region but never at its distal boundary. This accumulation gave rise to dilated axons that often swelled into brilliantly fluorescent balloon-like structures up to 10 μm in diameter. Axonal fluorescence was probably specific for norepinephrine, being enhanced by inhibition of the metabolism and diminished by inhibition of the synthesis or storage of this neurotransmitter. After local cooling of nerves for 1.5 hr, specific fluorescence was confined within 0.8 mm of the cooled region. Rewarming led to rapid removal of fluorescence from the cooled region and to disappearance of most of the balloon-like swellings. Simultaneously, rewarming caused brightly fluorescent fibers that were neither dilated nor swollen to appear in distal regions of nerve. As this wave of fluorescence migrated distally with increasing duration of rewarming, it was spread over increasingly broad regions of nerve, which suggests that axonal transport of norepinephrine may involve some kind of dispersive process.  相似文献   

10.
Axoplasmic transport of dopamine-β-hydroxylase (DBH), a marker enzyme for catecholamine storage vesicles, was studied in sympathetic nerves of the rat. At 24 h after ligation of the sciatic nerve, there was a marked accumulation of DBH activity in the first 3 mm proximal to the ligature. Immediately distal to the ligature, a slight accumulation took place. Accumulation proximal to the ligature was a linear function of time for at least 6 h; the velocity of transport was calculated as 4.6 mm/h. Local application of 1 ·l of 0.1 M colchicine, caused a rapid increase in DBH activity in superior cervical ganglia. This increase remained linear for 22 h and its rate indicated a turnover time of 12 h for DBH in these ganglia. After application of colchicine to the ganglia, there was a decrease in DBH activity in the submaxillary salivary glands. The initial rate of this decrease was less than the rate of increase in the ganglia and probably reflected the normal turnover of the enzyme. Our results indicated that the turnover time for DBH in salivary glands ranged between 3.6 and 6.3 days.  相似文献   

11.
Axonal transport of the 16S Molecular form of acetylcholinesterase (16S-AChE) in doubly ligated rat sciatic nerves was studied by means of velocity sedimentation analysis on sucrose gradients. This form of AChE was selectively confined to motor, and not to sensory, fibers in the sciatic nerve, where it represented 3--4% of total AChE. Its activity increased linearly with time (4--20 hr) in nerve segments (7 mm) proximal to the central ligature (4.5 mU/24hr) and distal to the peripheral ligature (2.0 mU/24 hr). From the linear rates of accumulation of 16S-AChE, we conclude that the enzyme is conveyed by anterograde and retrograde axonal transport at velocities close to those previously defined for the movement of total AChE (410 mm/day, anterograde; 220 mm/day, retrograde). The transport of AChE molecular forms, other than the 16S form, could not be resolved presumably due to their presence in blood as well as at extraaxonal sites. The present findings are consistent with the view that in rat sciatic nerve most, if not all, of the small portion of total AChE (approximately 3%) which is transported may be accounted for by 16S-AChE.  相似文献   

12.
The kinematics of turnaround and retrograde axonal transport   总被引:1,自引:0,他引:1  
Rapid axonal transport of a pulse of 35S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations.  相似文献   

13.
The axonal transport and subcellular distribution of noradrenaline (NA), dopamine beta-hydroxylase (DBH) and neuropeptide Y (NPY) were determined in dog sciatic nerve using an accumulation technique. The results were compared with those obtained by application of the same procedures and methods on the splenic nerve in the same animal species. Evidence was found for the coexistence of NA and NPY in large dense-cored vesicles in dog sciatic nerve axons. After differential centrifugation and isopyenic sucrose density gradient centrifugation of 24 h ligated sciatic nerve pieces NA and NPY equilibrated around 1M sucrose. The DBH activity was dispersed broadly on the gradient. Subsequently, the accumulation of NA, DBH and NPY was studied in proximal and sital segments of 8, 12 and 24 h dog ligated sciatic nerve and inferences were made concerning the axonal transport of these compounds. NA, DBH and NPY displayed a divergent accumulation proximal to the ligation. After 12 h of ligation a transport rate was calculated of 4.8 +/- 1.8 mm/h for NA, of 5.9 +/- 1.5 mm/h for DBH and of 4.9 +/- 2.0 mm/h for NPY. With a correction for the stationary fractions, a similar fast transport rate of approximately 10 to 12 mm/h was proposed for NA, DBH and NPY. The occurrence was shown of a limited retrograde transport of DBH and possibly NPY, but not of NA.  相似文献   

14.
An investigation was made of the effects of bathing media low in divalent cations on rapid axonal transport in the sciatic nerve of the amphibian Xenopus laevis. The anterograde transport of a pulse of [35S]methionine proteins was observed using a multiple proportional counter as the detector. Organelles undergoing anterograde and retrograde transport were detected by light microscopy. The structure of nerve fibers was examined by light and electron microscopy. There was no significant difference in the anterograde transport of proteins in nerves bathed in normal medium (NM) containing millimolar Ca2+ and Mg2+ and in those bathed in calcium-free medium (CaFM) containing Mg2+. The anterograde transport of labelled proteins continued at a normal velocity in nerves bathed in divalent cation free medium (DCFM) for at least 14 h. DCFM did cause some alterations in protein transport: the ratio of the plateau (following pulse passage) to the peak radioactivity was increased, the pulse amplitude decreased more rapidly, and the label continued to arrive at the distal end of the nerve for greater than 16 h. Anterograde and retrograde organelle transport continued normally for periods of greater than or equal to 4 h in fibres bathed in DCFM. All myelinated fibres became distorted within 4 h in DCFM. Similar distortion was rare in fibres bathed in CaFM. The results indicate that axonal transport in Xenopus is largely independent of lowered concentrations of divalent cations in the bathing medium. Those alterations in axonal transport that were produced by DCFM may have been secondary to morphological changes in the nerve fibres.  相似文献   

15.
In the olfactory nerve of the long-nosed garfish (Lepisosteus osseus), unusually well-defined isotope concentration distributions can be established with the rapid transport process. Transport velocities of two profile loci can be accurately described and a quantitative profile analysis is possible after profile normalization. Results from such studies indicate that: (1) peak amplitudes decrease exponentially as a function of distance from the olfactory mucosa according to the equation p = 2130 exp (– 0.109x); (2) the wavefront base and the peak apex loci move at rates of 221 ± 2 and 201 ± 4 mm/day, respectively (at 23°C), revealing a peak dispersion or broadening during transport; (3) the broadening is asymmetric with material shifting to the rear of the peak; (4) plateau regions are established behind the peak with material deposited by the peak; (5) only 20% of the total radioactivity in a cut nerve reaches the nerve terminals in the rapid transport peak while 80% is deposited along the axon; (6) profile areas from cut nerves decrease and lose 15% of their activity in 20 hr, while intact nerve profiles increase 10% in 16 hr due to continued somal contribution to the profile; (7) the displacement of the wavefront base (WFB) and peak apex (PA) profile loci can be described by the functions (8) transport velocities are linear functions of temperature between 10 and 25°C and increase 370% in that range. A linear extrapolation of the WFB and PA functions to 37°C yields 410 and 377 mm/day, respectively.  相似文献   

16.
Between 3 and 4 days after transection of cat sciatic nerve, Schwann cell-associated premitotic activity spreads anterogradely along degenerating distal nerve stumps at a rate of approximately 200 mm/day. We investigated whether fast anterograde axonal transport contributes to the initiation of this component of Wallerian degeneration. Axonal transport was blocked in intact and transected cat sciatic nerves by focally chilling a proximal segment to temperatures below 11 degrees C for 24 hr. Incorporation of [3H]thymidine (a marker of premitotic DNA synthesis) was then measured 3 and 4 days posttransection in cold blocked- and control-degenerating nerves. Effects of cold block prior to and concomitant with nerve transection were studied. Results failed to support the hypothesis that Schwann-cell premitotic activity after axotomy is associated with entry into the axon of mitogenic substances and their anterograde fast transport along the distal stump. Instead, data suggested that progressive anterograde failure of fast anterograde transport distal to transection serves to effect the Schwann-cell premitotic response to axotomy.  相似文献   

17.
1) Fast axoplasmic transport in mammalian nerve in vitro was studied using an isotope labeling technique. The rate of outflow in cat sciatic nerve fibers of 410 mm/day in vitro was reduced at temperatures below 38°C with a Q10 of 2.0 in the range 38–18°C and a Q10 of 2.3 at 38–13°C. 2) At a temperature of 11°C a partial failure of transport occurred. At temperatures below 11°C a complete block of fast axoplasmic transport occurred, a phenomenon termed “cold-block.” No transport at all was seen over the temperature range of 10–0°C for times lasting up to 48 hr. 3) Transport was resumed after a period of cold-block lasting up to 22 hr when the nerves were brought back to a temperature of 38°C. Some deleterious effects due to cold-block were seen in the recovery phase as indicated by a reduction in crest amplitude, change in its form, and slowed rate. 4) The ∼P level (combined ATP and creatine phosphate) remained near control level in nerves kept at low or cold-block temperatures for times as long as 64 hr. The reduction in fast axoplasmic transport rate seen at low temperatures for times up to 22 hr was therefore considered due to a decrease in the utilization of ATP, a concept in accord with the “transport filament” model proposed to account for fast axoplasmic transport. 5) The sloping of the front of the crest over the temperature range of 18–13°C suggests an additonal factor at the lower temperatures. A disassembly of microtubules is discussed as a possible explanation of the cold-block phenomenon.  相似文献   

18.
Optimal conditions for the measurement of phosphofructokinase activity in segments of rat sciatic nerve were established. It was found that maximal activity was obtained when the Triton X-100 concentration of the extraction buffer was 1% (v:v). Nerve segments could be stored at −80°C for at least 1 week without measurable loss of activity. The femoral portion of the sciatic nerve showed no proximo-distal bias in the distribution of phosphofructokinase activity and there were no differences in the activities of anatomically equivalent segments from contralateral nerves. Phosphofructokinase activity was subject to both anterograde and retrograde axonal transport as indicated by accumulation on both sides of a constriction applied to the sciatic trunk. Accumulation was progressive and appeared to be linear with time for at least 24 h. Linearity was lost at constrictions applied for 48 h. In experiments in which synchronous double ligations were applied to the nerve (9 mm apart), there was no redistribution of phosphofructokinase activity in the segment of nerve isolated between the two constrictions.  相似文献   

19.
The proximo-distal intra-axonal transport of acetylcholine (ACh) and cholinergic enzymes (choline acetyltransferase, CAT, and ACh-esterase, AChE) in rat regenerating sciatic nerve was studied by accumulation technique. Four types of axonal trauma were performed: freezing with solid CO2, crushing, ligating the nerve with remaining tight silk ligature, and cutting the nerve. Normal and sham-operated rats were used as controls. One to twenty-nine days later, the nerves were crushed about 15 mm proximal to the trauma. The nerve segment proximal to this crush was dissected out 12 hr later and assayed for ACh-content and enzyme activities. The increase in this segment 12 hr after crushing was taken as an indication of proximo-distal transport in the regenerating nerves. ACh transport did not seem to vary during regeneration as compared to controls. In contrast, the transport of both CAT and AChE was initially markedly depressed. Towards the end of the observation period (29 days), a recovery of CAT-transport occurred in all groups. Recovery of AChE-transport was marked in the freeze and crush groups. In the cut group no recovery was seen and in the ligated group only a small recovery occurred. Thus, in the nerves where regeneration was facilitated by the presence of intact connective tissue sheaths (freezing and crushing) recovery of transport occurred earlier than in cut or ligated nerves.  相似文献   

20.
Axonal transport of labelled protein was studied in rat sciatic nerve by analyzing nerve segments at intervals after injection of L-[3H]leucine into the lumbar spinal cord. Some nerves were sectioned before injection so that material in transit accumulated proximal to the section. The segments distal to the section served as controls for incorporation into the nerve of blood-borne label. An analysis of TCA-soluble and TCA-insoluble activity in cut and intact nerve segments was also made. No evidence was found for the existence of a 'superfast' component of axonal transport (velocity 2000 mm/day). Results showed that the most rapidly transported protein derived from the neuron soma had a conventional 'fast' velocity of 350-420 mm/day. There was no transport of TCA-soluble material. It is suggested that 'superfast' transport, detected in mice by other investigators, is an artefact resulting from failure to control for incorporation of circulating label into the sciatic nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号