首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
How to find small non-coding RNAs in bacteria   总被引:11,自引:0,他引:11  
Vogel J  Sharma CM 《Biological chemistry》2005,386(12):1219-1238
  相似文献   

4.
5.
Saito S  Kakeshita H  Nakamura K 《Gene》2009,428(1-2):2-8
Small, non-coding RNAs (ncRNAs) perform diverse functions in a variety of organisms, but few ncRNAs have been identified in Bacillus subtilis. To search the B. subtilis genome for genes encoding ncRNAs, we focused on 123 intergenic regions (IGRs) over 500 bp in length and analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under the non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase (4-6 h), but undetectable during the stationary phase (8 h). Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor sigma(A). These small RNAs might lack an SD sequence and exert their actions as ncRNAs.  相似文献   

6.
7.
Construction of small RNA cDNA libraries for deep sequencing   总被引:6,自引:0,他引:6  
Small RNAs (21-24 nucleotides) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are potent regulators of gene expression in both plants and animals. Several hundred genes encoding miRNAs and thousands of siRNAs have been experimentally identified by cloning approaches. New sequencing technologies facilitate the identification of these molecules and provide global quantitative expression data in a given biological sample. Here, we describe the methods used in our laboratory to construct small RNA cDNA libraries for high-throughput sequencing using technologies such as MPSS, 454 or SBS.  相似文献   

8.
9.
Ro S  Song R  Park C  Zheng H  Sanders KM  Yan W 《RNA (New York, N.Y.)》2007,13(12):2366-2380
Small noncoding RNAs have been suggested to play important roles in the regulation of gene expression across all species from plants to humans. To identify small RNAs expressed by the ovary, we generated mouse ovarian small RNA complementary DNA (srcDNA) libraries and sequenced 800 srcDNA clones. We identified 236 small RNAs including 122 microRNAs (miRNAs), 79 piwi-interacting RNAs (piRNAs), and 35 small nucleolar RNAs (snoRNAs). Among these small RNAs, 15 miRNAs, 74 piRNAs, and 21 snoRNAs are novel. Approximately 70% of the ovarian piRNAs are encoded by multicopy genes located within the repetitive regions, resembling previously identified repeat-associated small interference RNAs (rasiRNAs), whereas the remaining approximately 30% of piRNA genes are located in nonrepetitive regions of the genome with characteristics similar to the majority of piRNAs originally cloned from the testis. Since these two types of piRNAs display different structural features, we categorized them into two classes: repeat-associated piRNAs (rapiRNAs, equivalent of the rasiRNAs) and non-repeat-associated piRNAs (napiRNAs). Expression profiling analyses revealed that ovarian miRNAs were either ubiquitously expressed in multiple tissues or preferentially expressed in a few tissues including the ovary. Ovaries appear to express more rapiRNAs than napiRNAs, and sequence analyses support that both may be generated through the "ping-pong" mechanism. Unique expression and structural features of these ovarian small noncoding RNAs suggest that they may play important roles in the control of folliculogenesis and female fertility.  相似文献   

10.
11.
Solexa sequencing analysis of chicken pre-adipocyte microRNAs   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in a variety of biological processes. Studies of miRNAs in mammals suggest that many are involved in lipid metabolism and adipocyte differentiation, but little is known about miRNA expression profiles during chicken adipogenesis. In this study, the Solexa sequencing approach was used to sequence a small RNA library prepared from Arbor Acres broiler pre-adipocytes, and more than 10? short sequence reads were obtained. From these, 159 known chicken miRNAs and 63 novel miRNAs were identified using a bioinformatics approach. Fifty-nine of these miRNA genes were further organized into 27 compact miRNA genomic clusters, and 34 new chicken mirtrons were also discovered, among which there were 27 mirtron candidates. These findings should serve as a foundation for future research on the functional roles of miRNAs in chicken adipocyte differentiation.  相似文献   

12.
13.
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression. They are characterized by specific maturation processes defined by canonical and non-canonical biogenic pathways. Analysis of ∼0.5 billion sequences from mouse data sets derived from different tissues, developmental stages and cell types, partly characterized by either ablation or mutation of the main proteins belonging to miRNA processor complexes, reveals 66 high-confidence new genomic loci coding for miRNAs that could be processed in a canonical or non-canonical manner. A proportion of the newly discovered miRNAs comprises mirtrons, for which we define a new sub-class. Notably, some of these newly discovered miRNAs are generated from untranslated and open reading frames of coding genes, and we experimentally validate these. We also show that many annotated miRNAs do not present miRNA-like features, as they are neither processed by known processing complexes nor loaded on AGO2; this indicates that the current miRNA miRBase database list should be refined and re-defined. Accordingly, a group of them map on ribosomal RNA molecules, whereas others cannot undergo genuine miRNA biogenesis. Notably, a group of annotated miRNAs are Dgcr8 independent and DICER dependent endogenous small interfering RNAs that derive from a unique hairpin formed from a short interspersed nuclear element.  相似文献   

14.
RNA interference (RNAi)-related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA) co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3' ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA-methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3'-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1-bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4-bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways.  相似文献   

15.
16.
The 35 nucleotide spliced leader (SL) sequence is found on the 5' end of numerous trypanosome mRNAs, yet the tandemly organized reiteration units encoding this leader are not detectably linked to any of these structural genes. Here we report the presence of a class of discrete small SL RNA molecules that are derived from the genomic SL reiteration units of Trypanosoma brucei, Trypanosoma cruzi, and Leptomonas collosoma. These small SL RNAs are 135, 105, and 95 nucleotides, respectively, and contain a 5'-terminal SL or SL-like sequence. S1 nuclease analyses demonstrate that these small SL RNAs are transcribed from continuous sequence within the respective SL reiteration units. With the exception of the SL sequence and a concensus donor splice site immediately following it, these small RNAs are not well conserved. We suggest that the small SL RNAs may function as a donor of the SL sequence in an intermolecular process that places the SL at the 5' terminus of many trypanosomatid mRNAs.  相似文献   

17.
Chen Z  Zhang J  Kong J  Li S  Fu Y  Li S  Zhang H  Li Y  Zhu Y 《Genetica》2006,128(1-3):21-31
Small non-coding RNAs play important roles in regulating cell functions by controlling mRNA turnover and translational repression in eukaryotic cells. Here we isolated 162 endogenous small RNA molecules from Oryza sativa, which ranged from 16 to 35 nt in length. Further analysis indicated that they represented a diversity of small RNA molecules, including 17 microRNAs (miRNAs), 30 tiny non-coding RNAs (tncRNAs) and 20 repeat-associated small interfering RNAs (rasiRNAs). Among 17 miRNAs, 13 were novel miRNA candidates and their potential targets were important regulatory genes in the rice genome. We also found that a cluster of small RNAs, including many rasiRNAs, matched to a nuclear DNA fragment that evolutionarily derived from chloroplast. These results demonstrate clearly the existence of distinct types of small RNAs in rice and further suggest that small RNAs may control gene regulation through diverse mechanisms.  相似文献   

18.
19.
20.
MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. miRNAs have been shown to play important roles in stem cell maintenance, cell fate determination, and differentiation. Planarians are capable of regenerating entire body plans from tiny fragments; this regenerative capacity is facilitated by a population of pluripotent stem cells known as neoblasts. Planarians have been a classic model system for the study of many aspects of stem cell biology. However, very limited knowledge on miRNA involved in this regulatory mechanism exists. This study profiles the expression of miRNAs in the normal and regenerative tissues of planarians using miRCURY LNA array technology. Thirteen miRNAs showed significant differences in expression between these two tissues. To further confirm our results, we examined the expression of two miRNAs by qRT-PCR. Results show that some known miRNAs may play key roles in the regulatory mechanisms of regeneration. Our findings can be utilized in future research on miRNA function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号