首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracisternal A-type particles (IAP) are defective endogenous retroviruses that accumulate in the endoplasmic reticulum (ER) of rodent cells. The enveloped particles are produced by assembly and budding of IAP Gag polyproteins at the ER membrane. In this study, we analyzed the specific ER transport of the Gag polyprotein of the IAP element MIA14. To this end, we performed in vitro translation of Gag in the presence of microsomal membranes or synthetic proteoliposomes followed by membrane sedimentation or flotation. ER binding of IAP Gag occurred mostly cotranslationally, and Gag polyproteins interacted specifically with proteoliposomes containing only signal recognition particle (SRP) receptor and the Sec61p complex, which form the minimal ER translocation apparatus. The direct participation of SRP in ER targeting of IAP Gag was demonstrated in cross-linking and immunoprecipitation experiments. The IAP polyprotein was not translocated into the ER; it was found to be tightly associated with the cytoplasmic side of the ER membrane but did not behave as an integral membrane protein. Substituting the functional signal peptide of preprolactin for the hydrophobic sequence at the N terminus of IAP Gag also did not result in translocation of the chimeric protein into the ER lumen, and grafting the IAP hydrophobic sequence onto preprolactin failed to yield luminal transport as well. These results suggest that the N-terminal hydrophobic region of the IAP Gag polyprotein functions as a transport signal which mediates SRP-dependent ER targeting, but polyprotein translocation or integration into the membrane is prevented by the signal sequence itself and by additional regions of Gag.  相似文献   

2.
How non-enveloped viruses overcome host cell membranes is poorly understood. Here, we show that after endocytosis and transport to the endoplasmic reticulum (ER), but before crossing the ER membrane to the cytosol, incoming simian virus 40 particles are structurally remodelled leading to exposure of the amino-terminal sequence of the minor viral protein VP2. These hydrophobic sequences anchor the virus to membranes. A negatively charged residue, Glu 17, in the α-helical, membrane-embedded peptide is essential for infection, most likely by introducing an 'irregularity' recognized by the ER-associated degradation (ERAD) system for membrane proteins. Using a siRNA-mediated screen, the lumenal chaperone BiP and the ER-membrane protein BAP31 (both involved in ERAD) were identified as being essential for infection. They co-localized with the virus in discrete foci and promoted its ER-to-cytosol dislocation. Virus-like particles devoid of VP2 failed to cross the membrane. The results demonstrated that ERAD-factors assist virus transport across the ER membrane.  相似文献   

3.
Through two-hybrid interactions, protein affinity and localization studies, we previously identified Yip1p, an integral yeast Golgi membrane protein able to bind the Ras-like GTPases Ypt1p and Ypt31p in their GDP-bound conformation. In a further two-hybrid screen, we identified Yif1p as an interacting factor of Yip1p. We show that Yif1p is an evolutionarily conserved, essential 35.5 kDa transmembrane protein that forms a tight complex with Yip1p on Golgi membranes. The hydrophilic N-terminal half of Yif1p faces the cytosol, and according to two-hybrid analyses can interact with the transport GTPases Ypt1p, Ypt31p and Sec4p, but in contrast to Yip1p, this interaction is dispensable for Yif1 protein function. Loss of Yif1p function in conditional-lethal mutants results in a block of endoplasmic reticulum (ER)-to-Golgi protein transport and in an accumulation of ER membranes and 40-50 nm vesicles. Genetic analyses suggest that Yif1p acts downstream of Yip1p. It is inferred that Ypt GTPase binding to the Yip1p-Yif1p complex is essential for and precedes vesicle docking and fusion.  相似文献   

4.
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.  相似文献   

5.
The Euglena precursor to the small subunit of ribulose-15-bisphosphate carboxylase/oxygenase (pSSU) is a polyprotein. To determine the transport route from cytoplasm to chloroplast, Euglena was pulse labeled with 35S-sulfate and the organelles were separated on sucrose gradients. After a pulse, pSSU was found in the endoplasmic reticulum (ER) and Golgi apparatus. During a chase, ER-and Golgi-localized pSSU decreased concomitant with the appearance of SSU in chloroplasts. SSU was not found in pSSU-containing ER and Golgi fractions. Na2CO3 did not remove pSSU from ER or Golgi membranes, indicating that it was an integral membrane protein. pSSU was inserted in vitro into canine microsomes, and Na2CO3 did not remove pSSU from the microsomal membrane. The in vivo and in vitro experiments show that Euglena pSSU is inserted into the ER membrane and transported as an integral membrane protein to the Golgi apparatus before chloroplast import and polyprotein processing.  相似文献   

6.
Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.  相似文献   

7.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

8.
The positioning and dynamics of organelles in eukaryotic cells critically depend on membrane-cytoskeleton interactions. Motor proteins play an important role in the directed movement of organelle membranes along microtubules, but the basic mechanism by which membranes stably interact with the microtubule cytoskeleton is largely unknown. Here we report that p63, an integral membrane protein of the reticular subdomain of the rough endoplasmic reticulum (ER), binds microtubules in vivo and in vitro. Overexpression of p63 in cell culture led to a striking rearrangement of the ER and to concomitant bundling of microtubules along the altered ER. Mutational analysis of the cytoplasmic domain of p63 revealed two determinants responsible for these changes: an ER rearrangement determinant near the N-terminus and a central microtubule-binding region. The two determinants function independently of one another as indicated by deletion experiments. A peptide corresponding to the cytoplasmic tail of p63 promoted microtubule polymerization in vitro. p63 is the first identified integral membrane protein that can link a membrane organelle directly to microtubules. By doing so, it may contribute to the positioning of the ER along microtubules.  相似文献   

9.
Characteristics of endoplasmic reticulum-derived transport vesicles   总被引:21,自引:6,他引:15       下载免费PDF全文
《The Journal of cell biology》1994,126(5):1133-1148
We have isolated vesicles that mediate protein transport from the ER to Golgi membranes in perforated yeast. These vesicles, which form de novo during in vitro incubations, carry lumenal and membrane proteins that include core-glycosylated pro-alpha-factor, Bet1, Sec22, and Bos1, but not ER-resident Kar2 or Sec61 proteins. Thus, lumenal and membrane proteins in the ER are sorted prior to transport vesicle scission. Inhibition of Ypt1p-function, which prevents newly formed vesicles from docking to cis-Golgi membranes, was used to block transport. Vesicles that accumulate are competent for fusion with cis-Golgi membranes, but not with ER membranes, and thus are functionally committed to vectorial transport. A 900-fold enrichment was developed using differential centrifugation and a series of velocity and equilibrium density gradients. Electron microscopic analysis shows a uniform population of 60 nm vesicles that lack peripheral protein coats. Quantitative Western blot analysis indicates that protein markers of cytosol and cellular membranes are depleted throughout the purification, whereas the synaptobrevin-like Bet1, Sec22, and Bos1 proteins are highly enriched. Uncoated ER-derived transport vesicles (ERV) contain twelve major proteins that associate tightly with the membrane. The ERV proteins may represent abundant cargo and additional targeting molecules.  相似文献   

10.
Enwrapment by membrane cisternae has emerged recently as a mechanism of envelopment for large enveloped DNA viruses, such as herpesviruses, poxviruses, and African swine fever (ASF) virus. For both ASF virus and the poxviruses, wrapping is a multistage process initiated by the recruitment of capsid proteins onto membrane cisternae of the endoplasmic reticulum (ER) or associated ER-Golgi intermediate membrane compartments. Capsid assembly induces progressive bending of membrane cisternae into the characteristic shape of viral particles, and envelopment provides virions with two membranes in one step. We have used biochemical assays for ASF virus capsid recruitment, assembly, and envelopment to define the cellular processes important for the enwrapment of viruses by membrane cisternae. Capsid assembly on the ER membrane, and envelopment by ER cisternae, were inhibited when cells were depleted of ATP or depleted of calcium by incubation with A23187 and EDTA or the ER calcium ATPase inhibitor, thapsigargin. Electron microscopy analysis showed that cells depleted of calcium were unable to assemble icosahedral particles. Instead, assembly sites contained crescent-shaped and bulbous structures and, in rare cases, empty closed five-sided particles. Interestingly, recruitment of the capsid protein from the cytosol onto the ER membrane did not require ATP or an intact ER calcium store. The results show that following recruitment of the virus capsid protein onto the ER membrane, subsequent stages of capsid assembly and enwrapment are dependent on ATP and are regulated by the calcium gradients present across the ER membrane cisternae.  相似文献   

11.
In all eucaryotic cell types analyzed, proliferations of the endoplasmic reticulum (ER) can be induced by increasing the levels of certain integral ER proteins. One of the best characterized of these proteins is HMG-CoA reductase, which catalyzes the rate-limiting step in sterol biosynthesis. We have investigated the subcellular distributions of the two HMG-CoA reductase isozymes in Saccharomyces cerevisiae and the types of ER proliferations that arise in response to elevated levels of each isozyme. At endogenous expression levels, Hmg1p and Hmg2p were both primarily localized in the nuclear envelope. However, at increased levels, the isozymes displayed distinct subcellular localization patterns in which each isozyme was predominantly localized in a different region of the ER. Specifically, increased levels of Hmg1p were concentrated in the nuclear envelope, whereas increased levels of Hmg2p were concentrated in the peripheral ER. In addition, an Hmg2p chimeric protein containing a 77-amino acid lumenal segment from Hmg1p was localized in a pattern that resembled that of Hmg1p when expressed at increased levels. Reflecting their different subcellular distributions, elevated levels of Hmg1p and Hmg2p induced sets of ER membrane proliferations with distinct morphologies. The ER membrane protein, Sec61p, was localized in the membranes induced by both Hmg1p and Hmg2p green fluorescent protein (GFP) fusions. In contrast, the lumenal ER protein, Kar2p, was present in Hmg1p:GFP membranes, but only rarely in Hmg2p:GFP membranes. These results indicated that the membranes synthesized in response to Hmg1p and Hmg2p were derived from the ER, but that the membranes were not identical in protein composition. We determined that the different types of ER proliferations were not simply due to quantitative differences in protein amounts or to the different half-lives of the two isozymes. It is possible that the specific distributions of the two yeast HMG-CoA reductase isozymes and their corresponding membrane proliferations may reveal regions of the ER that are specialized for certain branches of the sterol biosynthetic pathway.  相似文献   

12.
Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes.  相似文献   

13.
Brock SC  Heck JM  McGraw PA  Crowe JE 《Journal of virology》2005,79(19):12528-12535
The processes that facilitate transport of integral membrane proteins though the secretory pathway and subsequently target them to particular cellular membranes are relevant to almost every field of biology. These transport processes involve integration of proteins into the membrane of the endoplasmic reticulum (ER), passage from the ER to the Golgi, and post-Golgi trafficking. The respiratory syncytial virus (RSV) fusion (F) protein is a type I integral membrane protein that is uniformly distributed on the surface of infected nonpolarized cells and localizes to the apical plasma membrane of polarized epithelial cells. We expressed wild-type or altered RSV F proteins to gain a better understanding of secretory transport and plasma membrane targeting of type I membrane proteins in polarized and nonpolarized epithelial cells. Our findings reveal a novel, orientation-independent apical plasma membrane targeting function for the transmembrane domain of the RSV F protein in polarized epithelial cells. This work provides a basis for a more complete understanding of the role of the transmembrane domain and cytoplasmic tail of viral type I integral membrane proteins in secretory transport and plasma membrane targeting in polarized and nonpolarized cells.  相似文献   

14.
Misfolded secretory proteins are transported across the endoplasmic reticulum (ER) membrane into the cytosol for degradation by proteasomes. A large fraction of proteasomes in a cell is associated with the ER membrane. We show here that binding of proteasomes to ER membranes is salt sensitive, ATP dependent, and mediated by the 19S regulatory particle. The base of the 19S particle, which contains six AAA-ATPases, binds to microsomal membranes with high affinity, whereas the 19S lid complex binds weakly. We demonstrate that ribosomes and proteasomes compete for binding to the ER membrane and have similar affinities for their receptor. Ribosomes bind to the protein conducting channel formed by the Sec61 complex in the ER membrane. We co-precipitated subunits of the Sec61 complex with ER-associated proteasome 19S particles, and found that proteoliposomes containing only the Sec61 complex retained proteasome binding activity. Collectively, our data suggest that the Sec61 channel is a principal proteasome receptor in the ER membrane.  相似文献   

15.
The NTB-VPg protein of Tomato ringspot nepovirus is an integral membrane protein found in association with endoplasmic reticulum (ER)-derived membranes active in virus replication. A transmembrane helix present in a hydrophobic region at the C terminus of the NTB domain was previously shown to traverse the membranes, resulting in the translocation of the VPg domain in the lumen. We have now conducted an in planta analysis of membrane-targeting domains within NTB-VPg using in-frame fusions to the green fluorescent protein (GFP). As expected, the entire NTB-VPg protein directed the GFP fluorescence to ER membranes. GFP fusion proteins containing the C-terminal 86 amino acids of NTB-VPg also associated with ER membranes, resulting in ER-specific glycosylation at a naturally occurring glycosylation site in the VPg domain. Deletion of the hydrophobic region prevented the membrane association. The N-terminal 80 amino acids of NTB were also sufficient to direct the GFP fluorescence to intracellular membranes. A putative amphipathic helix in this region was necessary and sufficient to promote membrane association of the fusion proteins. Using in vitro membrane association assays and glycosylation site mapping, we show that the N terminus of NTB can be translocated in the lumen at least in vitro. This translocation was dependent on the presence of the putative amphipathic helix, suggesting that oligomeric forms of this helix traverse the membrane. Taken together, our results suggest that at least two distinct elements play a key role in the insertion of NTB-VPg in the membranes: a C-terminal transmembrane helix and an N-terminal amphipathic helix. An updated model of the topology of the protein in the membrane is presented.  相似文献   

16.
Zhang G  Sanfaçon H 《Journal of virology》2006,80(21):10847-10857
Replication of nepoviruses (family Comoviridae) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleoside triphosphate-binding protein (NTB) of Tomato ringspot nepovirus is an integral membrane protein with two ER-targeting sequences and have suggested that it anchors the viral replication complex (VRC) to the membranes. A second highly hydrophobic protein domain (X2) is located immediately upstream of the NTB domain in the RNA1-encoded polyprotein. X2 shares conserved sequence motifs with the comovirus 32-kDa protein, an ER-targeted protein implicated in VRC assembly. In this study, we examined the ability of X2 to associate with intracellular membranes. The X2 protein was fused to the green fluorescent protein and expressed in Nicotiana benthamiana by agroinfiltration. Confocal microscopy and membrane flotation experiments suggested that X2 is targeted to ER membranes. Mutagenesis studies revealed that X2 contains multiple ER-targeting domains, including two C-terminal transmembrane helices and a less-well-defined domain further upstream. To investigate the topology of the protein in the membrane, in vitro glycosylation assays were conducted using X2 derivatives that contained N-glycosylation sites introduced at the N or C termini of the protein. The results led us to propose a topological model for X2 in which the protein traverses the membrane three times, with the N terminus oriented in the lumen and the C terminus exposed to the cytoplasmic face. Taken together, our results indicate that X2 is an ER-targeted polytopic membrane protein and raises the possibility that it acts as a second membrane anchor for the VRC.  相似文献   

17.
The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein–Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry membrane outward along microtubules after detaching from stable Golgi structures. Brefeldin A treatment, which reversibly disassembles the Golgi complex, accentuated tubule formation without tubule detachment. A tubule network extending throughout the cytoplasm was quickly generated and persisted for 5–10 min until rapidly emptying Golgi contents into the ER within 15–30 s. Both lipid and protein emptied from the Golgi at similar rapid rates, leaving no Golgi structure behind, indicating that Golgi membranes do not simply mix but are absorbed into the ER in BFA-treated cells. The directionality of redistribution implied Golgi membranes are at a higher free energy state than ER membranes. Analysis of its kinetics suggested a mechanism that is analogous to wetting or adsorptive phenomena in which a tension-driven membrane flow supplements diffusive transfer of Golgi membrane into the ER. Such nonselective, flow-assisted transport of Golgi membranes into ER suggests that mechanisms that regulate retrograde tubule formation and detachment from the Golgi complex are integral to the existence and maintenance of this organelle.  相似文献   

18.
We investigated immunocytochemically the ultrastructural localization of protein disulfide isomerase (PDI) in rat pancreatic exocrine cells by use of the post-embedding protein A-gold technique. We found that not only the endoplasmic reticulum (ER) and nuclear envelope but also the trans-Golgi cisternae, secretory granules, and plasma membranes were heavily labeled with gold particles. Labeling density of the gold particles in the rough ER and plasma membranes of the exocrine pancreatic cells was twofold and twentyfold greater, respectively, than that of hepatocytes. In the acinar lumen, amorphous material presumably corresponding to the secreted zymogens was also labeled with gold particles. These results suggest that in rat exocrine pancreatic cells a significant amount of PDI is transported to the plasma membrane and secreted to the acinar lumen.  相似文献   

19.
Recruitment of cytosolic proteins to individual membranes is governed by a combination of protein–protein and protein–membrane interactions. Many proteins recognize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the cytosolic surface of the plasma membrane (PM). Here, we show that a protein–lipid interaction can also serve as a dominant signal for the sorting of integral membrane proteins. Interaction with phosphatidly-inositolphosphates (PIPs) at the PM is involved in the targeting of the polytopic yeast protein Ist2 to PM-associated domains of the cortical endoplasmic reticulum (ER). Moreover, binding of PI(4,5)P2 at the PM functions as a dominant mechanism that targets other integral membrane proteins to PM-associated domains of the cortical ER. This sorting to a subdomain of the ER abolishes proteasomal degradation and trafficking along the classical secretory (sec) pathway. In combination with the localization of IST2 mRNA to the bud tip and other redundant signals in Ist2, binding of PIPs leads to efficient accumulation of Ist2 at domains of the cortical ER from where the protein may reach the PM independently of the function of the sec-pathway.  相似文献   

20.
Rotavirus assembly is a multistep process that requires the successive association of four major structural proteins in three concentric layers. It has been assumed until now that VP4, the most external viral protein that forms the spikes of mature virions, associates with double-layer particles within the endoplasmic reticulum (ER) in conjunction with VP7 and with the help of a nonstructural protein, NSP4. VP7 and NSP4 are two glycosylated proteins. However, we recently described a strong association of VP4 with raft-type membrane microdomains, a result that makes the ER a highly questionable site for the final assembly of rotavirus, since rafts are thought to be absent from this compartment. In this study, we used tunicamycin (TM), a drug known to block the first step of protein N glycosylation, as a tool to dissect rotavirus assembly. We show that, as expected, TM blocks viral protein glycosylation and also decreases virus infectivity. In the meantime, viral particles were blocked as enveloped particles in the ER. Interestingly, TM does not prevent the targeting of VP4 to the cell surface nor its association with raft membranes, whereas the infectivity associated with the raft fractions strongly decreased. VP4 does not colocalize with the ER marker protein disulfide-isomerase even when viral particles were blocked by TM in this compartment. These results strongly support a primary role for raft membranes in rotavirus final assembly and the fact that VP4 assembly with the rest of the particle is an extrareticular event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号