首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deoxythymidine kinase activities were induced in HeLa TK- (deoxythymidine kinase-deficient) cells infected with either herpes simplex virus type I or herpes simplex virus type II. The herpes simplex virus type I-induced enzyme was found in the cytoplasmic and nuclear fractions of the infected cells, whereas the herpes simplex type II-induced deoxythymidine kinase could only be found in the cytoplasm. Herpes simplex virus type I and II specific deoxythymidine kinases were purified by affinity column chromatography. Both purified deoxythymidine kinases retained the deoxycytidine kinase activity present in the crude preparation. The purified herpes simplex virus type I deoxythymidine kinase had a different mobility on electrophoresis, but the same sedimentation rate on a glycerol gradient as the corresponding unpurified enzyme, whereas the purified herpes simplex virus type II deoxythymidine kinase had the same mobility and sedimentation rate as the corresponding unpurified enzyme. In the presence of Mg2+ATP and dithiothreitol, herpes simplex virus type II deoxythymidine kinase was more stable than herpes simplex virus type I deoxythymidine kinase at both 45 degrees and 4 degrees. The deoxycytidine kinase activity present in the purified preparations was inactivated at the same rate as the deoxythymidine kinase activity. In the presence of the other substrate, deoxythymidine, herpes simplex virus type I deoxythymidine kinase was more stable than herpes simplex virus type II kinase. The purified herpes simplex virus type I and II deoxythymidine kinase had different activation energies when Mg2+ATP and deoxythymidine were used as substrates, but showed the same sensitivity toward ammonium sulfate inhibition.  相似文献   

2.
3.
We have isolated a new cyclic AMP-independent protein kinase activity induced in HeLa cells by infection with herpes simplex virus type 1. Induction of the enzyme does not occur in cells treated with cycloheximide at the time of infection, or in cells infected with UV-inactivated herpes simplex virus type 1. The amount of enzyme induced in infected cells is dependent upon the multiplicity of infection. An enzyme with identical properties to the appearing in infected HeLa cells is also induced by herpes simplex virus type 1 in BHK cells.  相似文献   

4.
Affinity chromatography on single-stranded and double-stranded DNA-cellulose indicates that 12 proteins previously identified from herpes simplex virus type 2-infected cells, ranging in molecular weight from 28 X 10(3) to 186 X 10(3), bind to DNA-cellulose. The DNA-binding proteins found in infected cells differed in relative binding strengths for denatured DNA-cellulose. The virus specificity of these DNA-binding proteins was further studied by comparison with DNA-binding proteins isolated from mock-infected cells, and by immunoprecipitation of infected-cell DNA-binding proteins with antisera specific for viral antigens. The promise this technique holds for the purification and study of polypeptides involved in virus DNA replication, recombination, or repair is discussed.  相似文献   

5.
Levamisole was tested to determine whether the drug could reduce metastases by HSV-1-transformed cells in a model hamster system. The results presented reveal an inhibition of metastases to the lungs even when the drug is inoculated after development of subcutaneous tumors at the site of inoculation of the cells.  相似文献   

6.
A DNA helicase induced by herpes simplex virus type 1.   总被引:18,自引:6,他引:12       下载免费PDF全文
We have identified and partially purified a DNA-dependent ATPase that is present specifically in herpes simplex virus type 1-infected Vero cells. The enzyme which has a molecular weight of approximately 440,000 differs from the comparable host enzyme in its elution from phosphocellulose columns and in its nucleoside triphosphate specificity. The partially purified DNA-dependent ATPase is also a DNA helicase that couples ATP or GTP hydrolysis to the displacement of an oligonucleotide annealed to M13 single-stranded DNA. The enzyme requires a 3' single-stranded tail on the duplex substrate, suggesting that the polarity of unwinding is 5'----3' relative to the M13 DNA. The herpes specific DNA helicase may therefore translocate on the lagging strand in the semidiscontinuous replication of the herpes virus 1 genome.  相似文献   

7.
Herpes simplex type 1 (HSV)-infected Vero cells can be permeabilized by a combination of hypotonic shock and a mild emulsifier, gum arabic. Permeabilized cells will incorporate triphosphate precursors into viral and host DNA in vitro in ratios similar to those seen in vivo. This reaction is ATP-dependent and is shown to be replicative by the single strand density shift of DNA synthesized in the presence of BrdUTP. The product is heterogeneous in size, and contains a significant proportion of rapidly sedimenting forms and of unit size (55S) viral DNA. The presence of polyamines and EGTA (a specific chelator of Ca2+ ions) in the labeling medium is shown to be necessary to maintain the integrity of the replicating DNA. The average size of newly synthesized single strands, however, is smaller than seen in vivo. The reaction is sensitive to phosphonoacetic acid added at the time of labeling, at concentrations which inhibit in vivo synthesis only after one hour of pre-exposure. These properties make permeabilized cell monolayers an attractive system for the study of HSV DNA replication.  相似文献   

8.
We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 X 10(4) cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a smiple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay.  相似文献   

9.
The acyclovir-resistant mutant of herpes simplex virus type 1, SC16 S1, induced reduced levels of thymidine kinase activity (ca. 25% reduction) in infected cells. The activity appeared with kinetics similar to that in wild type-infected cells, and pulse-labeling experiments showed that the thymidine kinase polypeptide was synthesized at a similar rate. We showed that the enzyme was virus specific by inactivating it with antiserum raised against herpes simplex virus-infected cell proteins. The enzyme induced by the mutant had reduced electrophoretic mobility in nondenaturing gels, decreased thermal stability, and decreased affinity for several different substrates (assessed by measurement of Km values) compared with the enzyme induced by the wild type. From the data obtained we conclude that the thymidine kinase induced by the mutant has an altered specificity, probably resulting from an amino acid substitution which affects the primary binding site for nucleosides and nucleoside analogs.  相似文献   

10.
Thymidine kinase derived from LMTK+ does not exhibit thymidylate kinase activity. However, protein isolated by affinity column chromatography from thymidine kinase-deficient mouse cells (LMTK-) infected by herpes simplex virus type 1 shows thymidylate kinase activity in addition to thymidine kinase and deoxycytidine kinase activities. The virus-induced multifunctional enzyme has a molecular weight of 85,000, whereas the molecular weight of thymidylate kinase from uninfected LMTK- mouse cells is 71,000. The virus-induced enzyme has a Km for thymidine of 0.8 micromolar, and for thymidylate of 25 micromolar, and for thymidylate of 25 micromolar; the ratio of Vmax for thymidylate kinase to thymidine kinase is 1.7. When subjected to isoelectric focusing, thymidylate kinase activity is not separated from thymidine kinase activity, and even though four peaks of activity are observed they have a constant ratio of thymidylate kinase to thymidine kinase activity. The isoelectric points (pI) of these four peaks are 4.8, 5.8, 6.2, and 6.6, respectively. Thymidylate kinase, derived from uninfected cells when subjected to isoelectric focusing, separates into a major component with an isoelectric point at pH 8.2 and a minor component at pH 7.7. Although thymidine and thymidylate kinase activities derived from the virus-infected cells cannot be separated either by affinity column chromatography, glycerol density gradient centrifugation, or isoelectric focusing, there is a differential rate of inactivation when the enzyme is subjected to incubation at 37 degrees, with thymidylate kinase activity being more labile than thymidine kinase activity.  相似文献   

11.
The human T-cell leukemia virus type I Tax protein (HTLV-I Tax) is known as a trans-activating factor for a variety of genes, including those of cytokines. Here, we show that Tax is capable of activating the herpes simplex virus thymidine kinase (HSV-TK) promoter in certain mammalian cell lines. In murine NIH 3T3 fibroblasts and human HeLa cells, trans-activation by Tax was remarkably strong, whereas in human chondrocytic HCS-2/8 and monkey kidney Cos-7 cells, the responsiveness of the TK promoter to Tax was poor. Deletion analysis revealed that one of the two previously described Sp1 sites is required for the Tax responsiveness, whereas the CTF binding site is not. The results suggest possible interactions between the oncogenic Tax protein and the viral TK in coinfected cells in vivo. Care should be taken in the context of HTLV-I research, as the HSV-TK promoter has been widely used in molecular biology and gene therapeutics.  相似文献   

12.
Pyrimidine deoxyribonucleoside kinase (thymidine kinase [TK]) was purified from two herpes simplex virus type 1 (HVS-1)-transformed TK-deficient mouse (LMTK-) cell lines and from LMTK- cells infected with HSV-1 mutant viruses coding for variant TK enzymes. These preparations exhibited normal or variant virus-induced thymidylate kinase activities correlating with their relative TK activities. Neither virus-induced activity was detected in LMTK- cells infected with an HSV-1 TK-deficient mutant. These results suggest that HSV-1 thymidylate kinase activity and TK activity are mediated by the same protein.  相似文献   

13.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

14.
Herpes Simplex Virus type 1 thymidine kinase (HSV 1 TK) is a key target for antiviral therapy and it phosphorylates a broad spectrum of nucleosides and nucleotides. We report the results from kinetic and inhibition experiments with HSV 1 TK, and show that there is a preferred, but not exclusive, binding order of substrates, i.e. dT binds prior to ATP. Furthermore, the results provide new informations on the mechanism of binding suggesting that HSV1 TK undergoes conformational changes during the catalytic cycle.  相似文献   

15.
We have determined the complete nucleotide sequence of the thymidine kinase gene of herpes simplex virus (HSV) type 2 strain 333. The sequence of the thymidine kinase gene exhibits an open translational reading frame of 1,128 nucleotides encoding a protein of 376 amino acids. The DNA sequence was compared with that of the HSV type 1 thymidine kinase gene from strain MP (S. L. McKnight, Nucleic Acids Res. 8:5949-5964, 1980) and from strain CL 101 (M. J. Wagner, J. A. Sharp, and W. C. Summers, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445, 1981) to assess the extent of intra- and intertypic variation for one viral gene. The nucleotides encoding the structural gene varied 1.7% between the two HSV type 1 strains and 19% between HSV type 1 and HSV type 2, which translated to differences in the amino acid sequence of the two proteins of 1.9 and 27%, respectively. The DNA encoding the 5' regulatory sequences appeared to be more conserved than the DNA coding for the structural gene, and the DNA at the 3' end of the gene was the least homologous.  相似文献   

16.
Herpes simplex virus type 1 (HSV 1) thymidine kinase (TK) exhibits an extensive substrate diversity for nucleobases and sugar moieties, in contrast to other TKs. This substrate diversity is the crucial molecular basis of selective antiviral and suicide gene therapy. The mechanisms of substrate binding of HSV 1 TK were studied by means of site-directed mutagenesis combined with isothermal calorimetric measurements and guided by theoretical calculations and sequence comparison. The results show the link between the exceptionally broad substrate diversity of HSV 1 TK and the presence of structural features such as the residue triad His-58/Met-128/Tyr-172. The mutation of Met-128 into a Phe and the double mutant M128F/Y172F result in mutants that have lost their activity. However, by exchanging His to form the triple mutant H58L/M128F/Y172F, the enzyme regains activity. Strikingly, this triple mutant becomes resistant toward acyclovir. Furthermore, we give evidence for the importance of Glu-225 of the flexible LID region for the catalytic reaction. The data presented give new insights to understand mechanisms ruling substrate diversity and thus are crucial for both the development of new antiviral drugs and engineering of mutant TKs apt to accept novel substrate analogs for gene therapeutic approaches.  相似文献   

17.
The herpes simplex virus type 2 thymidine kinase gene has been mapped to a position colinear with the herpes simplex virus type 1 thymidine kinase gene and cloned within a 4.0-kilobase fragment in pBR 322.  相似文献   

18.
19.
20.
When rabbit kidney cells were infected with herpes simplex virus type 1 (strain Seibert) or herpes simplex virus type 2 (strain 316D), deoxycytidine kinase (CdR kinase) activity, assayed at 38 degrees, increased 5- to 15-fold relative to controls. The CdR kinase activity induced by type 2 virus was more thermolabile than the enzyme activity induced by type 1 virus. When CdR kinase activity was assayed at various temperatures between 0.5 and 38 degrees, maximum activity for type 1 enzyme was obtained at 16 degrees while maximum activities for host and type 2 enzymes were obtained at 38 degrees. Both type 1 and type 2 induced CdR kinase activities eluted at the same positions as deoxythymidine kinase activities on a Sephadex G-100 column. The estimated mol wt for HSV-1 (Seibert) and HSV-2 (316D) induced CdR kinases are 67,000 and 60,000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号