首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have begun to assess the utility of opioid agonists and antagonists for the treatment of cocaine addiction. The present studies assess the effects of naltrexone or methadone on cocaine's reinforcing properties using the conditioned place preference (CPP) test. The results indicate that a 56 mg/kg dose of naltrexone, given 4 hr prior to conditioning, attenuates cocaine's CPP. In contrast, methadone (8 mg/kg), given 1 hr prior to conditioning, enhanced cocaine's reinforcing properties. These results support the suggestion that opioid antagonists may have clinical utility in treating cocaine addiction. The results with methadone lead to a possible explanation for the higher rates of cocaine use in methadone-treated heroin addicts.  相似文献   

2.
1. Site-directed mutagenesis of human plasma butyrylcholinesterase has led to novel hydrolases that rapidly destroy cocaine. We are investigating whether viral gene transfer of such enzymes might reduce addiction liability by blocking cocaine from its sites of action.2. As groundwork for a possible gene therapy, we previously studied adenoviral transduction of cocaine hydrolases in the rat. Systemically injected vectors raised plasma cocaine hydrolase activity greatly, reduced pressor responses to cocaine, and lowered cocaine's tissue burden.3. In the present study, to reduce cocaine's brain access still further, vectors were injected directly into the nucleus accumbens. Six days later, medium sized neurons gained dramatic butyrylcholinesterase activity. Species-selective immunohistochemistry proved that the transgene accounted for this activity.4. Since the transgene product is so efficient with cocaine as a substrate, it is now reasonable to begin testing gene therapy in rodent models of cocaine addiction.  相似文献   

3.
4.
Knapp CM  Lee K  Foye M  Ciraulo DA  Kornetsky C 《Life sciences》2001,69(14):1673-1682
Evidence from cocaine self-administration studies suggests that increasing the activity of cyclic AMP (cAMP) pathways within the nucleus accumbens may produce a reduction in cocaine's reinforcing effects. Rolipram may increase intra-cellular levels of cAMP by selectively inhibiting Type IV phosphodiesterases, enzymes that catalyze cAMP breakdown. The present study was undertaken to test the hypothesis that infusion of rolipram into the nucleus accumbens would decrease cocaine-induced enhancement of the sensitivity of brain stimulation reward (BSR) pathways. BSR thresholds were determined in rats after the systemic administration of cocaine (4 mg/kg IP) and the infusion of rolipram (0.2 microg/side) into the nucleus accumbens both alone and in combination. Thresholds also were determined after the systemic administration of rolipram alone and, as a positive control, for amphetamine (10 microg/side) infused into the nucleus accumbens. BSR thresholds were significantly lowered below baseline levels following d-amphetamine administration suggesting that cannulae were in place to allow perfusion of reward pathways. Compared to values for saline alone, thresholds were lower after the injection of cocaine (4 mg/kg IP) or the infusion of rolipram (0.2 microg/side) into the nucleus accumbens. Treatment with the combination of cocaine and intra-nucleus accumbens rolipram produced a greater lowering of the BSR threshold than did administration of either rolipram or cocaine alone. Systemic administration of rolipram (0.5 mg/kg IP) either blocked the effects of BSR or raised BSR thresholds and produced stimulation-induced head jerking in most of the test animals. These results suggest that infusion into the nucleus accumbens of rolipram, an agent that putatively elevates cAMP levels in this structure, can enhance the sensitivity of reward pathways to BSR and can augment cocaine's actions on these pathways.  相似文献   

5.
Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (2 min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine's sustained positive effects (< 20 min), ratings of “high” and “rush” began to decrease within one or two puffs of a high-nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse and the implications for treatment of these addictive disorders are discussed.  相似文献   

6.
The route of administration influences the reinforcing effects of cocaine. Here we assessed whether there were differences in the efficacy of cocaine to block the dopamine transporters (major target for cocaine's reinforcing effects), as a function of route of administration. Positron emission tomography and [11C]cocaine, a dopamine transporter radioligand, were used to compare the levels of dopamine transporter blockade induced by intravenous, smoked and intranasal cocaine in 32 current cocaine abusers. In parallel, the temporal course for the self-reports of "high" were obtained. Cocaine significantly blocked dopamine transporters. The levels of blockade were comparable across all routes of administration and a dose effect was observed for intravenous and intranasal cocaine but not for smoked cocaine. For equivalent levels of cocaine in plasma and DAT blockade, smoked cocaine induced significantly greater self reports of "high" than intranasal cocaine and showed a trend for a greater effect than intravenous cocaine. The time to reach peak subjective was significantly faster for smoked (1.4+/-0.5 min) than for intravenous cocaine (3.1+/-0.9 min), which was faster than intranasal cocaine (14.6+/-8 min). Differences in the reinforcing effects of cocaine as a function of the route of administration are not due to differences in the efficacy of cocaine to block the dopamine transporters. The faster time course for the subjective effects for smoked than intravenous and for intravenous than for intranasal cocaine highlights the importance of the speed of cocaine's delivery into the brain on its reinforcing effects.  相似文献   

7.
To determine cocaine's toxicity in different organs, BALB/c mice were intraperitoneally injected daily for 15 days with either saline or cocaine: 10 mg/kg, 30 mg/kg, or 60 mg/kg. Cardiac function, hepatic pathophysiology, heart and liver apoptosis, and tumor necrosis factor (TNF-alpha) levels were analyzed. After administration of cocaine, cardiac function decreased. Inflammatory cell infiltration and eosinophilic contraction bands were visible in the hearts of mice treated with 60mg/kg cocaine. Moreover, histopathology demonstrated that cocaine caused hepatic necrosis. TdT-mediated dUTP nick end-labeling (TUNEL) staining and DNA ladder analysis indicated that cocaine caused apoptosis in both the heart and liver. Moreover, immunoassay showed that TNF-alpha levels significantly increased in the heart and liver with cocaine administration. However, our RT-PCR study showed that there was no significant difference in either the heart or liver in the levels of mRNA for TNF-alpha between cocaine-treated and saline control mice. The present study demonstrated that cocaine is toxic to multiple organs, and at low dose can induce hepatic damage without gross pathological injury to the heart. The results suggest that the liver is more sensitive than the heart to cocaine toxicity, and induction of apoptosis or TNF-alpha elevation may be a common mechanism responsible for cocaines toxicity.  相似文献   

8.
The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine's behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [(3)H]CFT binding to wild-type, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3alpha stereochemistry tended to exhibit benztropine-like binding, whereas those with 3beta stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features--most notably the presence of a diphenylmethoxy moiety--in determining a compound's binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility.  相似文献   

9.
Developmental signaling cascades that can be perturbed by cocaine and other drugs of abuse have been difficult to study in humans and vertebrate models. Although numerous direct neural targets of cocaine have been elucidated at the molecular level, little is known about the specific cellular events that are impacted indirectly as a result of the drug's perturbation of neural circuits. We have developed oogenesis in Drosophila melanogaster as a model in which to identify downstream biochemical and/or cellular processes that are disrupted by chronic cocaine exposure. In this model, cocaine feeding resulted not only in expected reductions in viability, but also in unanticipated developmental defects during oogenesis, including aberrant follicle morphogenesis and vitellogenic follicle degeneration. To identify mechanisms through which cocaine exerted its deleterious effects on oogenesis, we examined candidate components of neural and hormonal signaling pathways. Cocaine-induced disruptions in follicle formation were enhanced by juvenile hormone exposure and phenocopied by serotonin feeding, while cocaine-activated follicle apoptosis was enhanced by concomitant dopamine feeding. HPLC analysis of dopamine and serotonin in the ovary suggests that these neurotransmitters could variably mediate cocaine's effects on oogenesis indirectly in the brain and/or directly in the ovary itself. We confirmed the involvement of hormone signaling by measuring ecdysteroids, which increase following cocaine exposure, and by demonstrating suppression of cocaine-induced follicle loss by hormone receptor mutants. Cocaine-induced ovarian follicle apoptosis and adult lethality appear to be caused by modulation of dopamine levels, while morphological defects during follicle formation likely result from perturbing serotonin signaling during cocaine exposure. Our work suggests not only a new role for juvenile hormone and/or serotonin in Drosophila ovarian follicle formation, but also a cocaine-sensitive role for dopamine in modulating hormone levels in the female fly.  相似文献   

10.
To investigate the pharmacologic effects of the interaction between ethanol and cocaine, eleven male, paid volunteers familiar with the use of both ethanol and cocaine were tested in a dose-response, placebo-controlled, single-blind, randomly-assigned, cross-over design. Ethanol (0.85 g/kg) or placebo was administered in divided doses over a thirty minute period. Fifteen minutes after the termination of ethanol ingestion, cocaine HCl (1.25 and 1.9 mg/kg) or placebo (lidocaine and mannitol) was given by nasal insufflation (snorting). Cocaine and cocaethylene plasma concentrations, blood ethanol levels, subjective ratings of drug effects, and cardiovascular parameters were measured. Statistical analysis of the results indicate that: 1) cocaine administration did not alter blood ethanol concentrations nor the ratings of ethanol intoxication; 2) ethanol caused a significant increase in cocaine plasma concentrations, ratings of cocaine "high", and heart rate; 3) acute tolerance to the subjective and heart rate effects of cocaine was observed; 4) when combined with cocaine, ethanol led to the slow formation of cocaethylene in amounts much lower than those of its parent compound; and 5) the appearance of cocaethylene in plasma did not alter cocaine's subjective and cardiovascular effects.  相似文献   

11.
The purpose of the current experiment was to study the role of various adrenoceptor subtypes in the cardiovascular response to cocaine in conscious squirrel monkeys. A variety of adrenoceptor antagonists were administered i.v. prior to the administration of 0.3 mg/kg cocaine (i.v.). Cocaine alone produced an increase in both blood pressure and heart rate. The non-selective alpha adrenoceptor antagonist phentolamine produced a dose-dependent antagonism of the pressor effect of cocaine, as did the alpha-1 selective antagonist prazosin. The alpha-2 selective antagonist yohimbine had no effect on the pressor effect of cocaine. The non-selective beta antagonist propranolol enhanced the pressor effect of cocaine as did the beta-1 selective antagonist atenolol. However, the effect of atenolol was not dose-dependent. The beta-2 selective antagonist ICI 118,551 and labetalol, which blocks both alpha and beta adrenoceptors, did not alter the pressor effect of cocaine. Propranolol, atenolol, and labetalol all antagonized the tachycardiac effect of cocaine in a dose-dependent manner, while the beta-2 antagonist ICI 118,551 did not. Phentolamine, prazosin and yohimbine also reduced the tachycardiac effect of cocaine, although these effects were dose-dependent only for yohimbine, which also significantly elevated baseline heart rate. These results indicate that alpha-1 adrenoceptor mechanisms mediate the pressor effect of cocaine, while beta-1 adrenoceptor mechanisms are involved in the tachycardiac effect of cocaine in squirrel monkeys. Propranolol potentiated cocaine's pressor effect through beta-2 independent mechanisms. Thus, neither alpha-2 nor beta-2 adrenoceptor mechanisms appear to be involved in cocaine's cardiovascular effects.  相似文献   

12.
T A Kosten  D W Marby  E J Nestler 《Life sciences》1991,49(24):PL201-PL206
Previous research shows that buprenorphine (BUP), a mixed opioid agonist-antagonist, reduces cocaine use in humans and suppresses cocaine self-administration in monkeys. The present study found that BUP reduces cocaine's ability to condition a place preference in rats. Compared to vehicle treated rats, rats treated with BUP 2 times/day for 2 weeks spent significantly less time in the cocaine conditioned place compared to their respective saline trained controls. No conditioned place preference was shown for BUP alone. These results further implicate a role for the opioid system in cocaine use and stress the importance of differentiating chronic vs. acute opioid effects.  相似文献   

13.
Compromised ability to exert control over drug urges and drug-seeking behaviour is a characteristic of addiction. One specific cognitive control function, impulse control, has been shown to be a risk factor for the development of substance problems and has been linked in animal models to increased drug administration and relapse. We present evidence of a direct effect of cocaine on the neurobiology underlying impulse control. In a laboratory test of motor response inhibition, an intravenous cocaine administration improved task performance in 13 cocaine users. This improvement was accompanied by increased activation in right dorsolateral and inferior frontal cortex, regions considered critical for this cognitive function. Similarly, for both inhibitory control and action monitoring processes, cocaine normalized activation levels in lateral and medial prefrontal regions previously reported to be hypoactive in users relative to drug-naive controls. The acute amelioration of neurocognitive dysfunction may reflect a chronic dysregulation of those brain regions and the cognitive processes they subserve. Furthermore, the effects of cocaine on midline function suggest a dopaminergically mediated intersection between cocaine's acute reinforcing effects and its effects on cognitive control.  相似文献   

14.
The acute dose-dependent effects of epinephrine and cocaine on heart rate and coronary flow rate (CFR) were examined in isolated, perfused (Langendorff) rat hearts from animals: i) pretreated with daily cocaine injections (20 mg/kg/day) for 8 weeks; ii) after 2-day withdrawal from 8-week cocaine pretreatment; iii) vehicle-treated controls. Chronic cocaine (CC) hearts were significantly less sensitive to the chronotropic effects of epinephrine than control (C) or withdrawal (CW) hearts. CW hearts exhibited significantly higher heart rates in response to epinephrine than C and CC hearts. Epinephrine alone (2.5 x 10(-7) M) decreased CFR 11% (C), 9%(CC), 14%(CW) from respective baseline levels. Cocaine alone had no significant effect on CFR in C hearts but produced slight dose-dependent decrements in CFR in CC and particularly CW hearts at higher doses. Cocaine plus epinephrine markedly decreased CFR in all groups, particularly in CW hearts. The results indicate that chronic daily cocaine administration produces a functional tolerance of the heart to the chronotropic actions of epinephrine but a 2-day withdrawal from chronic cocaine results in a rebound supersensitivity to adrenergic stimulation and cocaine's sympathomimetic effects. In addition, cocaine produces only minor decrements in coronary flow in the rat heart, while cocaine acts synergisticallly with epinephrine to produce a marked decrease in CFR.  相似文献   

15.
In vivo electrochemical measurements, involving chronoamperometric recordings using monoamine-selective Nafion-coated electrodes, were used to study the effects of locally applied cocaine (50-500 micromolar barrel concentrations) on dopamine (DA) nerve terminals in the neostriatum of the anaesthetized rat. Local application of cocaine did not elicit detectable increases in basal levels of extracellular DA. However, locally applied cocaine significantly augmented the concentration of DA detected following a potassium (K+)-evoked depolarization. Data obtained with a new high-speed chronoamperometric recording technique further support that DA is the predominant species detected electrochemically following potassium-evoked depolarizations both before and after local application of cocaine. Unlike other locally applied uptake inhibitors that we have studied, cocaine failed to augment the time dynamics of released DA. In addition, large doses of the highest concentration of cocaine caused an attenuation of K+-evoked DA release, presumably due to cocaine's local anaesthetic properties. These data suggest that cocaine elevates synaptic levels of DA, but in a manner that is not identical to other potent monoamine uptake inhibitors.  相似文献   

16.
The aim of this study was to determine the effect of intravenous cocaine on the coronary circulation in the dog. Sixteen beagles separated into three groups were administered either cocaine (n = 8) or lidocaine (n = 4) at doses of 0.4, 2.0, and 10.0 mg/kg under conditions of constant coronary blood flow. A third group of beagles (n = 4) was administered cocaine under conditions of natural coronary blood flow. In the first group, the lowest dose of cocaine had no significant effect on coronary perfusion pressure, even though it increased mean systemic arterial pressure by 10% (p less than 0.05). The second two doses decreased coronary perfusion pressure by 13 (p less than 0.05) and 68% (p less than 0.05), respectively. In the second group, the lowest dose of lidocaine did not significantly affect coronary perfusion pressure. However, the second two doses significantly decreased coronary perfusion pressure by 22 (p less than 0.05) and 45% (p less than 0.05), respectively. Under conditions of natural coronary blood flow and coronary perfusion pressure, these same doses of cocaine increased coronary blood flow by 25, 63, and 175%, respectively. All coronary vascular responses occurred 60 s after administration of cocaine or lidocaine. We conclude that cocaine causes rapid, dose-dependent coronary vasodilation in the anesthetized beagle. The coronary vasodilation appears to be related to cocaine's known, local anesthetic properties.  相似文献   

17.
Chronic cocaine use elicits changes in the pattern of gene expression within reinforcement-related, dopaminergic regions. cDNA hybridization arrays were used to illuminate cocaine-regulated genes in the nucleus accumbens (NAcc) of non-human primates (Macaca fascicularis; cynomolgus macaque), treated daily with escalating doses of cocaine over one year. Changes seen in mRNA levels by hybridization array analysis were confirmed at the level of protein (via specific immunoblots). Significantly up-regulated genes included: protein kinase A alpha catalytic subunit (PKA(calpha)); cell adhesion tyrosine kinase beta (PYK2); mitogen activated protein kinase kinase 1 (MEK1); and beta-catenin. While some of these changes exist in previously described cocaine-responsive models, others are novel to any model of cocaine use. All of these adaptive responses coexist within a signaling scheme that could account for known inductions of genes(e.g. fos and jun proteins, and cyclic AMP response element binding protein) previously shown to be relevant to cocaine's behavioral actions. The complete data set from this experiment has been posted to the newly created Drug and Alcohol Abuse Array Data Consortium (http://www.arraydata.org) for mining by the general research community.  相似文献   

18.
Accumulating evidence has shown disparate behavioral responses to cocaine in male and female rats. To date, there is a lack of understanding of how cocaine administration frequency affects sexually dimorphic behavioral responses. In the present study we investigated the behavioral and endocrine responses to single (1 x 15 mg/kg) and "binge" (3 x 15 mg/kg) cocaine administration in male and female Fischer rats. Overall, females showed a more prolonged and robust behavioral response to both acute and "binge" pattern cocaine administration. Furthermore, sex-dependent behavioral topographies emerged during binge-pattern cocaine administration; female rearing activity increased across "binge" injections while ambulatory activity decreased. In contrast, male ambulatory and rearing behaviors remained constant across injections of "binge" cocaine. At the hormonal level, both single and "binge" pattern cocaine administration decreased testosterone levels in male rats. However, cocaine's modulation of testosterone levels was transient since testosterone levels were decreased by cocaine 30 min but not 3 hr following a single injection. In both male and female rats, "binge" cocaine increased plasma progesterone levels. However, acute cocaine administration increased progesterone levels transiently in only female rats. Our results show that pattern of administration affects both cocaine-stimulated behavioral and endocrine responses in male and female rats.  相似文献   

19.
The present study examines the possible role of sodium channels in the behavioral effects of cocaine. Cocaine congeners are apparent competitive inhibitors of the scorpion toxin-enhanced binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels in mouse cerebrocortical synaptosomes. However, in agreement with the allosteric model for heterotropic cooperative interactions, the compounds produce a concentration-dependent increase in the rate of dissociation of binding. Concentrations that give a 2-fold increase of k-1 are close to Ki values for inhibiting equilibrium binding of [3H]bactrachotoxinin A 20-alpha-benzoate, suggesting that the inhibitory effect on binding results mostly from an increase of the apparent dissociation rate constant. The ester linkage between the tropane and benzoyl ring of cocaine is not essential for the inhibitory potency, and for both the C-2 and C-3 substituents the equatorial position results in a higher potency than the axial position. There is reasonable agreement between the rank order of potencies in blocking the sodium channel and in inhibiting locomotor behavior. The present results do not support a relationship between the capability of cocaine congeners in blocking sodium flux and in inhibiting uptake of dopamine into striatal synaptosomes. However, peak levels of cocaine in the brain of cocaine addicts could be high enough to interfere with sodium channel functioning, possibly contributing to some of cocaine's actions.  相似文献   

20.
The potential involvement of D1 and D2 dopamine receptors in the effects of cocaine on cardiovascular function in squirrel monkeys was evaluated. A low dose of cocaine (0.1 mg/kg i.v.) produced increases in both blood pressure and heart rate. At the higher doses of cocaine (1.0-3.0 mg/kg) the heart rate response was biphasic, consisting of an early decrease followed by an increase in heart rate 10-20 min following injection. The dopamine D2 antagonist haloperidol (0.1 mg/kg i.m.) attenuated the heart rate increasing effect of cocaine, but doses as high as 0.03 mg/kg did not alter the blood pressure increase. The D1 antagonist SCH 23390 (0.01-0.03 mg/kg i.m.) did not attenuate either the blood pressure or heart rate increasing effects of cocaine. The D2 agonist quinpirole (1.0 mg/kg i.v.) produced increases in heart rate similar to cocaine, with little effect on blood pressure. Although effective against the heart rate increasing effect of cocaine, haloperidol (0.01 mg/kg) did not antagonize the heart rate increasing effects of quinpirole. The D1 agonist SKF 38393 (3.0 mg/kg i.v.) decreased heart rate and increased blood pressure. The blood pressure increasing effect of SKF 38393 was antagonized by 0.01 mg/kg SCH 23390. Haloperidol's ability to partially antagonize the tachycardiac response to cocaine suggests the involvement of D2 receptors in that response. However, the failure of haloperidol to antagonize quinpirole's tachycardiac effect suggests that non-dopaminergic mechanisms may also be involved in haloperidol's antagonism of cocaine's tachycardiac effect. The pressor effects of cocaine do not appear to be controlled by selective dopamine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号