首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-1 (IL-1) production by periodic acid (H5IO6)-oxidized human peripheral blood mononuclear (PBMN) cells was assessed by the thymocyte co-mitogenesis assay. Maximum IL-1 levels ( 1.2 U/ml) in the conditioned media of PBMN cells were registered within the first 24 hrs post-oxidation, whereas no IL-1 was detected in the media from 24 hrs control cultures. Thymocyte proliferation, driven by periodic acid-induced IL-1, was abolished by an antibody to IL-1alpha and IL-1. Quantitative analysis of IL-1-containing medium by radioimmunoassay (RIA) indicated that IL-1 comprised about 80% of total IL-1. Partial characterization of H5IO6-induced IL-1 indicated that it was identical to IL-1 produced by lipopolysaccharide-stimulated macrophages. It is concluded that oxidation of human PBMN cells by H5IO6 triggers synthesis and release of IL-1, most of which was in its IL-1 form.  相似文献   

2.
3.
Coffee is a globally consumed beverage with potential health benefits. However, there are few reports about the effects of coffee on immunological functions. We previously reported that in an allergic mouse model, coffee intake prevented allergy development through augmentation of interleukin (IL)-12p40. In order to investigate the anti-allergic activity of coffee, we examined the effect of coffee on antigen (Ag)-specific responses of immune cells in vitro. Coffee treatment suppressed proliferation and IL-2 secretion of mouse splenocytes in the same way as splenocytes from mice administered coffee orally. However, IL-12p40 secretion decreased significantly as a result of in vitro coffee treatment, which was contrary to the results obtained from experiments of mice administered coffee orally. Therefore, modification associated with oral administration might influence the anti-allergic activity of coffee.  相似文献   

4.
5.
Cytotoxicity against two human bladder carcinoma cell lines (BT-A and BT-B) was investigated using human peripheral blood mononuclear cells (PBMC) stimulated with viable bacillus Calmette-Guérin (BCG) or sonicated BCG (s-BCG). We applied a cytotoxicity assay based on radioactive labelling of tumour cells by incorporation ofl[3H]methionine. The results were compared with the cytotoxicity exerted by lymphokine-activated killer (LAK) cells generated by interleukin-2 (IL-2) and interferon (IFN). BCG-stimulated PBMC showed a cytotoxic potential against BT-A and BT-B comparable to that of IFN-generated LAK cells, but this did not reach the level of IL-2-generated LAK cells. We termed these cytotoxic effectors BCG-activated killer (BAK) cells. In contrast to their cytotoxicity against bladder tumour cells. BAK cells did not differ from unstimulated PBMC in the killing of K562 cells. Only viable but not sonicated BCG was able to induce cytotoxicity against BT-A and BT-B. We could demonstrate the presence of the cytokines IFN, IL-2, tumour necrosis factor (TNF) and TNFß in the supernatants harvested during the generation of BAK cells. Monoclonal antibodies neutralizing IFN were able to inhibit BCG-mediated cytotoxicity, giving evidence of the involvement of IFN in the induction of BAK cells. Furthermore, we performed experiments to investigate the cytotoxic potential of distinct cell populations. The cells effective in BCG-activated killing of bladder tumour cells could be localized within the CD8+/CD56+ lymphocyte subset. CD4+ cells and macrophages did not exhibit cytolytic activity. Our findings imply that the activation by BCG of CD8+/CD56+ killer cells might be an important antitumoral mechanism during BCG therapy against superficial urothelial bladder cancer.  相似文献   

6.
Polyphenols, coumarin (1,2-benzopyrone) and chromone (1,4-benzopyrone), are naturally occurring constituent of variety of plant species. They have attracted immense interest because of their diverse pharmacological activities. Not much was known about biological activities of acetyl derivative (polyphenolic acetates) of parent polyphenols. In previous investigations, we have conclusively established calreticulin transacetylase catalyzed activation of endothelial nitric oxide synthase (eNOS) by polyphenolic acetates. In the present work, calreticulin transacetylase of human peripheral blood mononuclear cells was characterized with respect to specificity for various polyphenolic acetates and its role in the activation of TNF-α induced nitric oxide synthase (iNOS). Peripheral blood mononuclear cells incubated with a model polyphenolic acetate, 7,8-diacetoxy-4-methylcoumarin (DAMC), along with l-arginine caused activation of NOS. The incubation of peripheral blood mononuclear cells with TNF-α and DAMC resulted in increased production of NO as compared to TNF-α alone. This increased NO production was attenuated by l-Nω-nitro-l-arginine methyl ester (l-NAME), a well known non-specific inhibitor of NOS, and 1400W (N-[3-(aminomethyl) benzyl] acetamidine), a specific inhibitor of human iNOS. These results substantiate the CRTAase catalyzed activation of iNOS. Further, expression of NOS isoforms by semi-quantitative PCR and real-time RT-PCR confirms the preponderance of iNOS in TNF-α treated peripheral blood mononuclear cells over the untreated one. It was also observed that polyphenolic acetates inhibit TNF-α mediated release of IL-6 from peripheral blood mononuclear cells.  相似文献   

7.
1α,25-dihydroxyvitamin D(3) (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human na?ve B cells. Na?ve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human na?ve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in na?ve B cells, namely by reducing CD40 signaling.  相似文献   

8.
9.
Variable sensitivity to T-cell-receptor (TCR)- and IL-7-receptor (IL-7R)-mediated homeostatic signals among na?ve T cells has thus far been largely attributed to differences in TCR specificity. We show here that even when withdrawn from self-peptide-induced TCR stimulation, CD8(+) T cells exhibit heterogeneous responses to interleukin-7 (IL-7) that are mechanistically associated with IL-7R expression differences that correlate with relative CD5 expression. Whereas CD5(hi) and CD5(lo) T cells survive equivalently in the presence of saturating IL-7 levels in vitro, CD5(hi) T cells proliferate more robustly. Conversely, CD5(lo) T cells exhibit prolonged survival when withdrawn from homeostatic stimuli. Through quantitative experimental analysis of signaling downstream of IL-7R, we find that the enhanced IL-7 responsiveness of CD5(hi) T cells is directly related to their greater surface IL-7R expression. Further, we identify a quantitative threshold in IL-7R-mediated signaling capacity required for proliferation that lies well above an analogous threshold requirement for survival. These distinct thresholds allow subtle differences in IL-7R expression between CD5(lo) and CD5(hi) T cells to give rise to significant variations in their respective IL-7-induced proliferation, without altering survival. Heterogeneous IL-7 responsiveness is observed similarly in vivo, with CD5(hi) na?ve T cells proliferating preferentially in lymphopenic mice or lymphoreplete mice administered with exogenous IL-7. However, IL-7 in lymphoreplete mice appears to be maintained at an effective level for preserving homeostasis, such that neither CD5(hi) IL-7R(hi) nor CD5(lo) IL-7R(lo) T cells proliferate or survive preferentially. Our findings indicate that IL-7R-mediated signaling not only maintains the size but also impacts the diversity of the na?ve T-cell repertoire.  相似文献   

10.
To gain insight into the mechanism of memory B cell survival, we cultured highly purified subpopulations of tonsillar B cells with tonsillar fibroblasts. The fibroblasts greatly enhanced the survival of memory and na?ve B cells but did not delay the rapid apoptosis of germinal center B cells. B cell activation was not observed during the period of culture, as shown by the absence of activation markers and of cycling cells. These findings were reproduced when the B cells were physically separated from the fibroblasts by a semi-permeable transwell-membrane, indicating that the survival factor(s) were diffusible. Several cytokines including IL-6, IL-15, and VEGF were tested for survival activity but none could replace the fibroblasts. However, the addition of reduced glutathione (GSH) to the na?ve and memory B cells significantly enhanced their survival, and depletion of GSH resulted in rapid loss of B cell viability. Furthermore, intracellular glutathione levels were maintained when the B cells were co-cultured with fibroblasts. Our results suggest that glutathione plays an important role in the survival of memory and na?ve B cells in the presence of stromal cells.  相似文献   

11.
Bazdar DA  Sieg SF 《Journal of virology》2007,81(22):12670-12674
Proliferation responses of naïve CD4+ T cells to T-cell receptor and interleukin-7 (IL-7) stimulation were evaluated by using cells from human immunodeficiency virus-positive (HIV+) donors. IL-7 enhanced responses to T-cell receptor stimulation, and the magnitude of this enhancement was similar in cells from healthy controls and from HIV+ subjects. The overall response to T-cell receptor stimulation alone or in combination with IL-7, however, was diminished among viremic HIV+ donors and occurred independent of antigen-presenting cells. Frequencies of CD127+ cells were related to the magnitudes of proliferation enhancement that were mediated by IL-7. Thus, IL-7 enhances but does not fully restore the function of naïve CD4+ T cells from HIV-infected persons.Interleukin-7 (IL-7) plays an important role in T-cell homeostasis by modulating thymic output (1, 16, 22) and by enhancing the peripheral expansion and survival of both naïve and memory T-cell subsets (12, 18, 20, 25, 26, 31, 32). Under normal circumstances, the homeostatic maintenance of naïve CD4+ T cells is regulated by at least two types of signals that include T-cell receptor (TCR) engagement and IL-7 (10, 26, 30). In addition, IL-7 may play an important role in the conversion of effector T cells into long-term memory cells (12, 14).Homeostasis of T cells is dysregulated in human immunodeficiency virus (HIV) infection such that there is a marked depletion of CD4+ cells and a progressive loss of naïve CD4 and CD8+ T cells (24). Although the mechanisms for these deficiencies are not fully understood, it is possible that impairments in T-cell proliferation and responsiveness to immunomodulatory cytokines could play a role. In HIV disease, IL-7 is increased in plasma (2, 5, 11, 15, 19, 21, 23) and the alpha chain of the IL-7 receptor, CD127, is less frequently expressed among T lymphocytes (2, 5, 11, 21, 23). The ability of patient T cells to respond to IL-7 stimulation may be diminished in HIV disease but may not be related to the density of CD127 expression as it is in T cells from healthy controls (4). Moreover, the responsiveness of T cells, including naïve CD4+ lymphocytes, to TCR stimulation is diminished in HIV disease (27-29). Thus, defects in responsiveness to cytokines or TCR stimulation could contribute to the perturbations in T-cell proliferation and survival in HIV disease.In these studies, we examined the responsiveness of naïve CD4+ T cells from viremic HIV-positive (HIV+) donors (median plasma HIV RNA level, 25,200 copies/ml [range, 1,015 to 1,000,000 copies/ml]; median CD4 cell count, 429 cells/μl [range, 41 to 950 cells/μl]; median age, 38 years [range, 22 to 64 years]; n = 25) and aviremic, highly active antiretroviral therapy (HAART)-treated HIV+ donors (plasma HIV RNA level, <400 copies/ml; median CD4 cell count, 309 cells/μl [range, 74 to 918 cells/μl]; median age, 48 years [range, 37 to 55 years]; n = 12) to the combined stimulus of recombinant IL-7 (Cytheris) plus agonistic anti-CD3 antibody. Peripheral blood mononuclear cells (PBMC) were depleted of CD45RO+ cells by magnetic bead depletion (>90% purity) and were incubated in medium alone or were stimulated with anti-CD3 antibody, IL-7, or anti-CD3 antibody plus IL-7. CD4+CD45ROCD28+CD27+ cells were assessed for the expression of Ki67 2 days poststimulation by flow cytometric analyses. The addition of IL-7 to anti-CD3 antibody enhanced the induction of Ki67 expression in cells from both HIV+ and HIV-negative (HIV) donors (Fig. (Fig.11 and Fig. Fig.2).2). A diminished response to anti-CD3 antibody was observed among naïve CD4+ T cells from viremic HIV+ donors. In contrast, cells from aviremic HIV+ donors (all receiving antiretroviral therapy) had normal responses to anti-CD3 antibody compared to cells from healthy donors (Fig. (Fig.2).2). Importantly, the addition of IL-7 to the cultures significantly improved the responses to above those observed with anti-CD3 alone in HIV and HIV+ donors, regardless of viremia (Wilcoxon signed ranks test; for each comparison, P was <0.04), and the magnitude of that enhancement, although slightly diminished in cells from HIV+ donors, was not significantly different between groups of subjects when measured as either the enhancement (n-fold; not shown) or as the change in percent Ki67+ cells above the background observed for cells stimulated with anti-CD3 alone (Fig. (Fig.3).3). Although IL-7 enhanced responses to TCR stimulation in HIV subjects, the overall magnitude of the responses among cells from HIV viremic subjects did not reach the levels seen with cells from healthy donors, even in the presence of IL-7 (Fig. (Fig.2).2). It should be noted, however, that these functional readouts were not related to clinical indices of plasma HIV RNA level, CD4 cell count, or age when considered as continuous variables, suggesting that the functional perturbations in naïve CD4+ T cells are probably undermined by complexities extending beyond HIV replication (not shown). Together, these results suggest that TCR responsiveness is diminished in naïve CD4+ T cells from viremic HIV+ subjects, whereas responsiveness to IL-7 stimulation is relatively preserved.Open in a separate windowFIG. 1.IL-7 enhances the induction of Ki67 expression in naïve CD4+ T cells from healthy controls and HIV+ donors. CD45RO-depleted PBMC were incubated with anti-CD3 antibody (100 ng/ml), IL-7 (50 ng/ml), anti-CD3 antibody plus IL-7, or medium alone (RPMI with 10% fetal bovine serum). Cells were gated on CD4+CD27+CD28+ lymphocytes and examined for Ki67 expression by intracellular flow cytometry.Open in a separate windowFIG. 2.IL-7 responsiveness in cells from viremic and aviremic HIV+ donors. Plotted values represent the percentages of CD4+CD27+CD28+CD45RO T cells that expressed Ki67 after a 2-day incubation with anti-CD3 or with anti-CD3 plus IL-7. Percentages of Ki67+ cells in cultures without stimulation or with IL-7 only were subtracted from the values shown. Responses of cells from healthy controls (n = 9), HIV+ subjects with plasma HIV RNA levels of >400 copies/ml (n = 25), and HIV+ subjects on HAART with suppressed viral replication (<400 copies/ml; n = 12) are shown. Statistically significant differences between cells from controls and HIV+ donors are indicated. Analyses included Kruskal-Wallis test (P = 0.002) for multigroup comparisons and Mann-Whitney U test for comparison of two groups (*, P < 0.05).Open in a separate windowFIG. 3.IL-7 enhances responses to anti-CD3 antibody stimulation to a similar degree in cells from HIV+ and HIV donors. Naïve CD4+ T cells were incubated with IL-7, anti-CD3, anti-CD3 plus IL-7, or medium alone for 2 days. Background division (percent Ki67+ cells) in medium alone or IL-7 alone was first subtracted from the responses observed with cells stimulated with anti-CD3 alone or with anti-CD3 plus IL-7, respectively. The magnitude of IL-7 enhancement was then calculated by subtracting the percentage of naïve CD4+ cells that expressed Ki67+ after anti-CD3 antibody stimulation from the percentage of naïve CD4+ cells that expressed Ki67 after stimulation with anti-CD3 plus IL-7. n = 9, 25, and 12 for healthy controls, viremic subjects, and aviremic subjects, respectively.Previous studies indicate that the frequency of CD127+ T cells, particularly memory T-cell subsets, is reduced in patients with HIV disease (5, 11, 21, 23). This could, in part, result from the modulation of receptor expression through increased exposure to IL-7 in vivo and also may reflect accumulation of CD127 effector memory cells (21). We assessed the expression of CD127 in naïve CD4+CD45RA+CD28+CD27+ and memory CD4+CD45RO+ T cells in a subset of patients and asked if the frequencies of CD127+ cells were related to the induction of Ki67 expression by anti-CD3 or by anti-CD3 plus IL-7 among naïve CD4+ T cells. We reasoned that the ability of IL-7 to enhance responses to TCR stimulation might be limited if CD127 expression was diminished among naïve CD4+ T cells from HIV+ donors. Alternatively, a defect in functional responses also could be related to increased exposure to IL-7 in vivo, as may be reflected by the absence of CD127 receptor expression on memory T-cell subsets.In agreement with previous studies, our results suggest that CD127 expression is relatively preserved in naïve CD4+ T cells from HIV+ donors (representative histograms in Fig. Fig.4)4) (mean percentage of CD127+ cells, 87 and 83 for HIV donors [n = 5] and HIV+ donors [n = 17], respectively; P = 0.96) but is diminished in memory CD4+ T cells from HIV+ donors (mean percentage of CD127+ cells, 83 and 59 for HIV and HIV+ donors, respectively; P = 0.01). The frequencies of CD127+ naïve T cells were directly related to the frequencies of CD127+ memory T cells (Spearman''s correlations; r = 0.711, P = 0.001; n = 18) in HIV+ subjects. This result suggests that a similar mechanism modulates the expression of CD127 in these T-cell subsets, even though the loss of CD127 expression is clearly greater among the memory T cells in HIV disease. Neither CD127 expression among naïve CD4+ T cells nor CD127 expression among memory CD4+ T cells was related to the functional response of naïve CD4+ T cells to anti-CD3 (r = 0.238 and P = 0.36 for naïve CD127 expression; r = 0.293 and P = 0.25 for memory CD127 expression) or to anti-CD3 plus IL-7 (r = 0.32 and P = 0.21 for naïve CD127 expression; r = 0.31 and P = 0.22 for memory CD127 expression). There was a relationship between the percentage of CD127+ naïve T cells and the delta Ki67 expression that resulted from the addition of IL-7 to anti-CD3-treated cultures (percentage of Ki67+ cells in cultures treated with anti-CD3 plus IL-7 minus the percentage of Ki67+ cells in cultures treated with anti-CD3 alone) (Fig. (Fig.4).4). This relationship was statistically significant by Pearson''s correlation (r = 0.5, P = 0.041), the use of which was justified based on the normal distribution of the data. Spearman''s analysis, which is independent of data distribution, indicated a similar trend that was not statistically significant (r = 0.41, P = 0.1). The mean fluorescence intensity of CD127 expression on CD4+CD45RA+CD27+CD28+ T cells was not significantly related to the delta Ki67 expression induced by IL-7 but also suggested a trend consistent with a direct relationship between these indices (r = 0.45 and P = 0.07 by Pearson''s correlation; r = 0.34 and P = 0.18 by Spearman''s correlation). Despite the relative preservation of IL-7 receptor in naïve CD4+ T cells from HIV+ donors, the association between the frequencies of CD127+ cells and CD4+ T-cell proliferation responses to TCR plus IL-7 suggests that subtle IL-7 receptor perturbations might contribute to functional defects of naïve CD4+ T cells in HIV-infected persons.Open in a separate windowFIG. 4.CD127 receptor expression is related to enhancement of proliferation by IL-7. (A) Whole blood from a healthy control and an HIV-infected person was examined by flow cytometry for expression of CD127 on CD4+CD45RA+CD27+CD28+ (naïve) T cells. The gating strategy for identifying naïve cells involved an initial gate for lymphocyte forward and side scatter (SSC) characteristics (not shown) and then sequential gates for CD4 positive, CD45RA positive and, finally, CD28+CD27+ double-positive cells. (B) Plotted values indicating the relationship between the delta Ki67 expression in naïve CD4+ T cells and the percentage of CD127+ naïve T cells that was determined by using freshly isolated whole blood. The delta Ki67 expression was calculated by subtracting the percentage of naïve CD4+ cells that expressed Ki67+ after anti-CD3 antibody stimulation from the percentage of naïve CD4+ cells that expressed Ki67 after stimulation with anti-CD3 plus IL-7.To consider the possibility that antigen-presenting cells could contribute to the diminished response of T-cells to stimulation with TCR plus IL-7, we next asked if defects in TCR-plus-IL-7 stimulation could be detected in purified naïve CD4+ T-cell populations. CD4+CD45RO cells were negatively selected by magnetic bead depletion, achieving a purity of >90% as determined by flow cytometric analyses. Purified naïve CD4+ T cells were labeled with carboxy fluorescein succinimidyl ester (CFSE) tracking dye and incubated with IL-7, anti-CD3 antibody that was immobilized on a plate, anti-CD3 plus IL-7, or medium alone. The induction of proliferation was measured 7 days later by the dilution of CFSE tracking dye among CD4+CD27+ cells by calculating the division index (average number of cell divisions of all CD4+CD27+ cells) and the proliferation index (average number of divisions of CD4+CD27+ cells that had diluted tracking dye; Flow-Jo analysis software). These purified CD4+ T cells proliferated poorly in response to anti-CD3 antibody stimulation alone, providing functional evidence that the samples were free of antigen-presenting cell contamination (Fig. (Fig.5A).5A). The combined treatment of anti-CD3 and IL-7 induced cellular expansion, whereas alone, neither stimulus induced cellular proliferation during the 7-day period (Fig. (Fig.5A).5A). Responses of cells from HIV+ donors were reduced compared to those of cells from healthy donors, confirming that the defects in naïve CD4+ T-cell expansion are independent of antigen-presenting cells and not fully corrected by IL-7 (Fig. (Fig.5B5B).Open in a separate windowFIG. 5.Diminished responses to TCR plus IL-7 in purified naïve CD4+ T cells from HIV+ donors. CD4+CD45RO cells were purified from PBMC by negative selection. Cells from HIV+ donors (n = 7) and healthy controls (n = 7) were labeled with CSFE and incubated with anti-CD3 immobilized on a plate (5 μg/ml, overnight at 4°C) plus IL-7 (10 ng/ml). CFSE dye dilution was measured among the CD4+CD27+ cells. (A) Representative histograms showing the dilution of CFSE and CD27 expression among cells incubated with anti-CD3 antibody alone, IL-7 alone, or the combination of anti-CD3 plus IL-7. Placements of quadrant gates were based on an isotype control antibody stain (for CD27 expression) and on cells that had been incubated in medium alone (for CFSE dye dilution). (B) Division indices (average number of cell divisions among CD4+CD27+ cells) and proliferation indices (average number of cell divisions among CD4+CD27+ cells that had diluted tracking dye) are shown.IL-7 is a promising candidate for therapeutic and vaccine adjuvant applications in HIV disease. This cytokine may be especially beneficial in circumstances of immune reconstitution, since it normally plays an essential role in T-cell proliferation and survival. Here, we demonstrate that IL-7 efficiently enhances TCR-triggered naïve CD4+ T-cell expansion in cells from healthy individuals and from HIV+ donors. The mechanism of IL-7 activity is not discerned in these experiments but may involve effects on survival, such as the induction of Bcl-2 (9), or may involve the enhancement of IL-2 or IL-2 receptor expression (6, 8). In any case, our studies provide evidence that IL-7 should provide an effective therapy for the regulation of naïve CD4+ T-cell homeostasis and may be useful for vaccine adjuvant applications in HIV disease. The potential of this approach has been illustrated by recent human trials of IL-7 that demonstrated the expansion of naïve T cells in vivo after IL-7 administration to HIV-infected persons (13) and by animal studies, wherein IL-7 administration enhanced T-cell responses to immunization in mice (17).Notably, the depletion studies and purification methods employed here did not necessarily eliminate terminally differentiated effector memory CD4+ T cells from our cultures; however, studies of CMV-specific terminally differentiated cells suggested that these cells are primarily CD27 (3), and the use of three markers to identify naïve CD4+ T cells, including the ones used here (CD27, CD28, and CD45RO) is estimated to provide 98% assurance that the cells being examined are truly naïve (7). Thus, it is likely that terminally differentiated cells were largely removed from our analyses.Our observations provide confirmation of a significant defect in the responses of naïve CD4+ T cells to TCR triggering in HIV disease, and this defect is not fully corrected by IL-7, as shown here, or by IL-2, as we demonstrated previously (27). These deficiencies are reproduced even among naïve CD4+ T cells that are purified from professional antigen-presenting cells, indicating that the defects are intrinsic to the T cells and not a consequence of dysfunctional antigen-presenting cells. We propose that functional defects in naïve CD4+ T cells from HIV+ donors stem primarily from deficiencies in TCR signaling. Further studies that define the nature of naïve CD4+ T-cell defects in HIV disease will be required to address the underlying mechanisms.  相似文献   

12.
The production of monoclonal antibodies by hybridoma technology is dependent on lymphocytes taken from vertebrates which have to be immunized against the corresponding antigen. We present here our first experiments which should allow the replacement of this in vivo immunization step by an in vitro immunization procedure. This work provides new possibilities for the specific activation of immune cells in order to use them for the generation of antibodies which are not of murine origin. Bone marrow-derived dendritic cells were loaded with antigen and co-cultured with naïve T and B lymphocytes of non-immunized mice. The interaction and activation of the different cell types were investigated by measuring the expression of specific cell surface markers, the release of activation-dependent interleukins and the secretion of antigen-specific antibodies. We could demonstrate that dendritic cells process and present antigen fragments and activate T cells, that T cells proliferate and release activation-induced interleukins, and that B cells maturate under the influence of activated T cells and secrete antigen-specific antibodies.  相似文献   

13.
14.
We developed a sensitive and specific liquid chromatography–electrospray mass spectrometric (HPLC–ESI-MS) assay for the simultaneous determination of reduced and oxidized glutathione (GSH and GSSG) in peripheral blood mononuclear cells (PBMC). Following derivatization with N-ethylmaleimide to prevent GSH auto-oxidation, addition of thiosalicylic acid as internal standard, and protein precipitation with cold acetonitrile, the samples were injected into a diol column, eluted with acetonitrile–1% aqueous acetic acid (25:75) and detected by the ESI-MS system. The optimized method exhibited a good detection limit for both analytes (0.01 and 0.05 μM for GSH and GSSG, respectively). Good linearity was reached in the 0.01–20 μM range for GSH and 0.05–20 μM for GSSG. The mean recoveries of GSH and GSSG were 98.5–100.6% and 105.8–111.5%, respectively. The run-to-run repeatability for retention time and peak area was RSD% 0.06 and 1.75 for GSH and 0.18 and 2.50 for GSSG. The optimized method was applied to GSH and GSSG assay in PBMC analyzing 20 healthy individuals.  相似文献   

15.
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.  相似文献   

16.
The vaccine potential and immunogenicity of soluble Leishmania major exo-antigens (LmSEAgs), a potentially novel source for vaccine candidates for leishmaniasis, were evaluated in neonatal BALB/c mice and with human peripheral blood mononuclear cells. Vaccinated neonatal BALB/c mice resisted infection with L. major, and lymphoid cells from the mice proliferated when restimulation with LmSEAgs and produced interferon-gamma and some interleukin-4. In addition, LmSEAgs stimulated human peripheral blood mononuclear cells to produce large amounts of interferon-gamma and some interleukin-5. This finding suggests that LmSEAgs may be a vaccine candidate for leishmaniasis in humans.  相似文献   

17.
Shen C  Zhang J  Xia L  Meng F  Xie W 《Cellular immunology》2007,247(1):28-35
Latex microspheres-based artificial antigen-presenting cell constructs (aAPCs) are proved to be valuable tools to expand T cells ex vivo for adoptive cell therapy, but little is known about their potential for active immunization. In this report, HLA-A2/peptide tetramers were generated and co-coated with anti-mouse CD28 monoclonal antibody onto surface of cell-sized latex microspheres followed by immunization of na?ve HLA-A2/K(b) transgenic mice. Five- to six-fold expansion of tumor antigen-specific CTLs was observed in the spleen after three rounds of immunization. The consequent splenocytes can efficiently recognize endogenously expressed tumor antigen on the surface of human target cells and cytolyze the tumor cells in an antigen-specific manner. This report provides initially the experimental evidence that latex microspheres-based aAPCs can effectively prime antigen-specific CTL proliferation and cytolysis in na?ve mice. This may contribute to a better insight into the potential of microspheres-based aAPCs for active immunization.  相似文献   

18.
19.
Our previous studies have revealed a clear dose-dependent decrease in the percentage of na?ve CD4 T cells that are phenotypically CD45RA+ in PBL among A-bomb survivors. However, whether there is a similar radiation effect on CD8 T cells has remained undetermined because of the unreliability of CD45 isoforms as markers of na?ve and memory subsets among the CD8 T-cell population. In the present study, we used double labeling with CD45RO and CD62L for reliable identification of na?ve and memory cell subsets in both CD4 and CD8 T-cell populations among 533 Hiroshima A-bomb survivors. Statistically significant dose-dependent decreases in the percentages of CD45RO-/CD62L+ na?ve cells were found in the CD8 T-cell population as well as in the CD4 T-cell population. Furthermore, the percentages of CD45RO+/CD62L+ and CD45RO+/CD62L- memory T cells were found to increase significantly with increasing radiation dose in the CD8 T-cell population but not in the CD4 T-cell population. These results suggest that the prior A-bomb exposure has induced long-lasting deficits in both na?ve CD4 and CD8 T- cell populations along with increased proportions of these particular subsets of the memory CD8 T-cell population.  相似文献   

20.
While the role of Toll-like receptors (TLRs) has been investigated in murine models of tegumentary leishmaniasis caused by Leishmania (Viannia) braziliensis, the interaction between TLRs and Leishmania sp. has not been investigated in human cells. The aim of this study was to evaluate the involvement of TLR4 in cytokine production of human peripheral blood mononuclear cells (PBMCs) induced by L. braziliensis, and whether the parasite alters the expression of TLR4 on monocytes/macrophages. Amastigote forms were obtained from mice lesions and PBMCs were isolated from healthy donors. PBMCs were cultured in absence or presence of IFNγ, TLR4 neutralizing antibodies, natural antagonist of TLR4 (Bartonella LPS), TLR4 agonist (E. coli LPS), and amastigote forms. The concentrations of tumor necrosis factor (TNFα) and interleukin 10 (IL-10) were assayed by ELISA and TLR4 expression by flow cytometry. Amastigotes forms of L. braziliensis induced TNFα and IL-10 production only in IFNγ-primed PBMCs. The TNFα and IL-10 production was inhibited by TLR4 neutralization, both with anti-TLR4 antibodies and Bartonella LPS. Interestingly, addition of E. coli LPS further increased TNFα but not IL-10 production induced by L. braziliensis amastigotes. Amastigotes of L. braziliensis strongly reduced membrane TLR4 expression on monocytes/macrophages, apparently by internalization after the infection. The present study reveals that TLR4 drives the production of TNFα and IL-10 induced by L. braziliensis amastigotes and that the parasites decrease TLR4 expression on monocyte surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号