首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of microorganims that efficiently ferment lactose has a high biotechnological interest, particularly for cheese whey bioremediation processes with simultaneous bio-ethanol production. The lactose fermentation performance of a recombinant Saccharomyces cerevisiae flocculent strain was evaluated. The yeast consumed rapidly and completely lactose concentrations up to 150 g l−1 in either well- or micro-aerated batch fermentations. The maximum ethanol titre was 8% (v/v) and the highest ethanol productivity was 1.5–2 g l−1 h−1, in micro-aerated fermentations. The results presented here emphasise that this strain is an interesting alternative for the production of ethanol from lactose-based feedstocks.  相似文献   

2.
The effect of ethanol and sugars on rates of fermentation was studied. We used a strain of Canadida pseudotropicalis. The specific rate of fermentation was determined by using the Warburg manometer. The effect of ethanol was formulated as an exponential function of ethanol concentration, but the empirical constant was different when glucose or lactose was used as a substrate. The effects of both ethanol and substrate were formulated. It was demonstrate that when lactose and glucose were present in the medium with a small amount of alcohol, a synergistic effect on the rate of fermentation appeard. This phenomenon considerably limits the rate of fermentation.  相似文献   

3.
The production of ethanol from cheese whey lactose has been demonstrated using a single-stage continuous culture fermentation with 100% cell recycle. In a two-step process, an aerobic fed batch operation was used initially to allow biomass buildup in the absence of inhibitory ethanol concentrations. In the anaerobic ethanol-producing second step, a strain of Kluyveromyces fragilis selected on the basis of batch fermentation data had a maximum productivity of 7.1 g ethanol/L/h at a dilution rate of 0.15 h(-1), while achieving the goal of zero residual sugar concentration. The fermentation productivity diminished when the feed sugar concentation exceeded 120 g/L despite the inclusion of a lipid mixture previous shown to enhance batch fermentation productivities.  相似文献   

4.
Summary The scale-up of a whey fermentation byKluyveromyces fragilis was carried out in order to reproduce on a larger scale (100-l fermenter) the results obtained on a smaller scale (15-l fermenter).Using a standard procedure for inoculum development and medium pasteurization, the effects of mixing and lactose concentration on yeast growth, lactose consumption, COD reduction and dissolved oxygen have been studied.The most successful operation for this fermentation was found to be associated with high stirring rates and low lactose concentrations, since the process was controlled by both oxygen and lactose concentrations.  相似文献   

5.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

6.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

7.
Zou  Jing  Chen  Xiaohui  Hu  Yinghong  Xiao  Dongguang  Guo  Xuewu  Chang  Xuedong  Zhou  Lisha 《Biotechnology letters》2021,43(8):1607-1616
Objectives

Development of a system for direct lactose to ethanol fermentation provides a market for the massive amounts of underutilized whey permeate made by the dairy industry. For this system, glucose and galactose metabolism were uncoupled in Saccharomyces cerevisiae by deleting two negative regulatory genes, GAL80 and MIG1, and introducing the essential lactose hydrolase LAC4 and lactose transporter LAC12, from the native but inefficient lactose fermenting yeast Kluyveromyces marxianus.

Results

Previously, integration of the LAC4 and LAC12 genes into the MIG1 and NTH1 loci was achieved to construct strain AY-51024M. Low rates of lactose conversion led us to generate the Δmig1Δgal80 diploid mutant strain AY-GM from AY-5, which exhibited loss of diauxic growth and glucose repression, subsequently taking up galactose for consumption at a significantly higher rate and yielding higher ethanol concentrations than strain AY-51024M. Similarly, in cheese whey permeate powder solution (CWPS) during three, repeated, batch processes in a 5L bioreactor containing either 100 g/L or 150 g/L lactose, the lactose uptake and ethanol productivity rates were both significantly greater than that of AY-51024M, while the overall fermentation times were considerably lower.

Conclusions

Using the Cre-loxp system for deletion of the MIG1 and GAL80 genes to relieve glucose repression, and LAC4 and LAC12 overexpression to increase lactose uptake and conversion provides an efficient basis for yeast fermentation of whey permeate by-product into ethanol.

  相似文献   

8.
9.
Many facultatively fermentative yeast species exhibit a "Kluyver effect": even under oxygen-limited growth conditions, certain disaccharides that support aerobic, respiratory growth are not fermented, even though the component monosaccharides are good fermentation substrates. This article investigates the applicability of this phenomenon for high-cell-density cultivation of yeasts. In glucose-grown batch cultures of Candida utilis CBS 621, the onset of oxygen limitation led to alcoholic fermentation and, consequently, a decrease of the biomass yield on sugar. In maltose-grown cultures, alcoholic fermentation did not occur and oxygen-limited growth resulted in high biomass concentrations (90 g dry weight L(-1) from 200 g L(-1) maltose monohydrate in a simple batch fermentation). It was subsequently investigated whether this principle could also be applied to Kluyveromyces species exhibiting a Kluyver effect for lactose. In oxygen-limited, glucose-grown chemostat cultures of K. wickerhamii CBS 2745, high ethanol concentrations and low biomass yields were observed. Conversely, ethanol was absent and biomass yields on sugar were high in oxygen-limited chemostat cultures grown on lactose. Batch cultures of K. wickerhamii grown on lactose exhibited the same growth characteristics as the maltose-grown C. utilis cultures: absence of ethanol formation and high biomass yields. Within the species K. marxianus, the occurrence of a Kluyver effect for lactose is known to be strain dependent. Thus, K. marxianus CBS 7894 could be grown to high biomass densities in lactose-grown batch cultures, whereas strain CBS 5795 produced ethanol after the onset of oxygen limitation and, consequently, yielded low amounts of biomass. Because the use of yeast strains exhibiting a Kluyver effect obviates the need for controlled substrate-feeding strategies to avoid oxygen limitation, such strains should be excellently suited for the production of biomass and growth-related products from low-cost disaccharide-containing feedstocks. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Permeabilized cells of Kluyveromyces marxianus CCY eSY2 were tested as the source of lactase in the ethanol fermentation of concentrated deproteinized whey (65–70 g/l lactose) by Saccharomyces cerevisiae CCY 10–13–14. Rapid lactose hydrolysis by small amounts of permeabilized cells following the fermentation of released glucose and galactose by S. cerevisiae resulted in a twofold enhancement of the overall volumetric productivity (1.03 g/l × h), compared to the fermentation in which the lactose was directly fermented by K. marxianus.  相似文献   

11.
Whey-fermenting Kluyveromyces cultures were revealed among 105 yeast strains assimilating lactose. Eighteen strains from milk products, showing maximum potency, fermented galactose, sucrose, and raffinose, in addition to lactose. Many yeast strains fermented inulin. Most strains were resistant to cycloheximide and grew in medium containing glucose, NaCl, and ethanol at concentrations of up to 50, 11–12, and 10–12%, respectively (4°C). Three strains had mycocinogenic activity. After fermentation of whey with selected yeast strains at 30°C for 2–3 days, the ethanol concentration was 4–5%.  相似文献   

12.
A coupled fermentation-pervaporation process was operated continuously with on-line mass spectrometric gas analysis monitoring of product accumulation on both the upstream and the downstream sides of the membrane. Efficient coupling of the fermentation with pervaporation was attained when a steady state of ethanol production and removal was achieved with whey permeate containing high concentrations of lactose (>8%) or by controlled lactose additions that also compensated for loss of liquid due to pervaporation. The combined system consists of a tubular membrane pervaporation module, directly connected to a stirred fermentor to form one circulation loop, kept at 38°C, with both units operating under computer control. Mass spectrometric gas analysis of the CO2 gas evolved in the fermentor and the ethanol and water in the pervaporate on the downstream side of the membrane enabled us to follow the production of ethanol and its simultaneous removal. Membrane selectivity was calculated on-line and served to monitor the functioning of the membrane. Batch-wise-operated fermentation-pervaporation with Candida pseudotropicalis IP-513 yielded over 120 gl–1 of concentrated ethanol solution using supplemented whey permeate containing 16% lactose. A steady state lasting for about 20 h was achieved with ethanol productivity of 20 g h–1 (approx. 4 g l–1 h–1). Membrane selectivity was over 8. Controlled feeding of concentrated lactose suspension in the whey permeate (350 g l–1) resulted in the continuous collection of 120–140 g l–1 of ethanol pervaporate for 5 days, by which time salt accumulation hampered the fermentation. Medium refreshment restored the fermentative activity of the yeast cells and further extended the coupled process to over 9 days (200 h), when reversible membrane fouling occurred. The membrane module was exchanged and the combined process restarted. Correspondence to: Y. Shabtai  相似文献   

13.
The non-pollutant plant support material of the dwarf duckweed Wolffia arrhiza (Fam. Lemnaceae) was used for the entrapment of living yeast cells (Kluyveromyces fragilis) which hydrolyse lactose with the subsequent fermentation of glucose and galactose at high cell densities (up to 7.0 × 108/ml support). The stabile yeast-plant cell immobilizates are able to produce ethanol from lactose-containing media (e.g. whey) by batch fermentation (on a rotary shaker) or continuous fermentation (in a turbulence reactor) for several days (at a pH below 4.2 and a temperature of 30°C). The removal of whey proteins by a preceding heat denaturation of whey, high dilution rates, CSo values of 50 to 60 g lactose per litre whey and the preferential use of the K. fragilis strain DSM 7238 were determined as the prerequisites for an optimum continuous fermentation. Economically interesting productivities (Pmax ? 15 g ethanol/1 · h, D = 0.72 h?1) with an actual lactose turnover of 90% were obtained by using these parameters.  相似文献   

14.
Whey, an abundant byproduct of the dairy industry, contains large amounts of protein and lactose which could be used for fuel ethanol production. We have investigated a new organism as a candidate for such fermentations: recombinant Escherichia coli containing the genes encoding the ethanol pathway from Zymomonas mobilis. The highest level of ethanol achieved, 68 g/L, was produced after 108 hours in Luria broth containing 140 g lactose/L. Fermentations of lower lactose concentrations were completed more rapidly with approximately 88% of theoretical yields. Reconstituted sweet whey (60 g lactose/L)was fermented more slowly than lactose in Luria broth requiring 144 hours to produce 26 g ethanol/L. Supplementing sweet whey with a trace metal mix and ammonium sulfate reduced the required fermentation time to 72 hours and increased final ethanol concentration (28 g ethanol/L). By adding proteinases during fermentation, the requirement for ammonia was completely eliminated, and the rate of fermentation further improved (30 g ethanol/L after 48 hours). This latter incresed in rate of ethanol production and ethanol yield are presumed to result from incorporation of amino acids released by hydrolysis of whey proteins. The fermentation of sweet whey by ethanologenic E. coil reduced the nonvolatile residue by approximately 70%. This should reduce biological oxygen demand and reduce the cost of waste treatment. Whey supplemented with trace metals and small amounts of proteinase may represent an economically attractive feedstock for the production of ethanol and other useful chemicals.  相似文献   

15.
Optimization of fermentation conditions for ethanol production from whey   总被引:1,自引:0,他引:1  
Summary Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included initial pH of 4.57 and 30°C. Complete fermentation of the available lactose took place without supplementary nutrients; additions of nitrogen or phosphorus salts, yeast extract or corn steep liquor resulted in increased yeast production and lower ethanol yields. A positive correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g/l of ethanol was obtained within 22 h by using yeast inoculum of 13.9 g/l. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.  相似文献   

16.
Tolerance to high temperature and ethanol is a major factor in high‐temperature bio‐ethanol fermentation. The inhibitory effect of exogenously added ethanol (0–100 g L?1) on the growth of the newly isolated thermotolerant Issatchenkia orientalis IPE100 was evaluated at a range of temperatures (30–45°C). A generalized Monod equation with product inhibition was used to quantify ethanol tolerance, and it correlated well with the experimental data on microbial growth inhibition of ethanol at the temperatures of 30–45°C. The maximum inhibitory concentration of ethanol for growth (Pm) and toxic power (n) at the optimal growth temperature of 42°C were estimated to be 96.7 g L?1 and 1.23, respectively. The recently isolated thermotolerant I. orientalis IPE100 shows therefore a strong potential for the development of future high‐temperature bio‐ethanol fermentation technologies. This study provides useful insights into our understanding of the temperature‐dependent inhibitory effects of ethanol on yeast growth.  相似文献   

17.
An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (≤1%), maximum productivity (13.6 g liter−1 h−1) was gained from 15% substrate in the continuous feed at a dilution rate of 0.2 h−1. Complete fermentation of highly concentrated feed solutions (20%) was also demonstrated, but only with greatly diminished fermentor productivity (5.5 g liter−1 h−1).  相似文献   

18.
The effect of increasing the KCl concentration in the culture medium of an alcoholic fermentation of glucose using the bacterium Zymomonas mobilis was investigated. Data obtained with the wild-type strain (ZM4, ATCC 31821) and with a newly isolated osmotolerant mutant (SBE15) were compared. It was observed that, at high salt concentration, inhibition of growth occured (specific growth rate and biomass yield) while ethanol production (specific ethanol productivity and ethanol yield) was unaffected. In contrast, the specific rate of in-vitro ethanol production, using either cell-free extract or washed cells, was strongly inhibited by increasing the KCl concentration in the incubation mixture. Therefore, it was concluded that the intracellular concentration of KCl was maintained below the inhibitory concentration by an active transport system. In addition, the fermentation performances of the osmotolerant mutant strain were higher than those of the parent strain at all the KCl concentrations tested, suggesting the utility of the former to run ethanolic fermentations in crude industrial media with a high salt content. Furthermore, the fermentation data on media containing added KCl agreed well with those obtained on molasses media, suggesting that the inhibition observed on these media was due to their high osmolality. Correspondence to: J. Baratti  相似文献   

19.
Summary The suitability of extractive fermentation as a technique for the production of ethanol from lactose by Candida pseudotropicalis was examined as a potential improvement over conventional methods. A biocompatible solvent was selected through determination of the critical log P (octanol-water distribution coefficient) of the fermentation organism. Using Adol 85 NF, the selected solvent, extractive fed-batch and conventional fed-batch systems were operated for 160 h. The extractive system showed a 60% improvement in lactose consumption and ethanol production, as well as a 75% higher volumetric productivity.  相似文献   

20.
Ethanolic fermentation of simple sugars is an important step in the production of bioethanol as a renewable fuel. Significant levels of organic acids, which are generally considered inhibitory to microbial metabolism, could be accumulated during ethanolic fermentation, either as a fermentation product or as a by-product generated from pre-treatment steps. To study the impact of elevated concentrations of organic acids on ethanol production, varying levels of exogenous acetate or lactate were added into cultures of Thermoanaerobacter ethanolicus strain 39E with glucose, xylose or cellobiose as the sole fermentation substrate. Our results found that lactate was in general inhibitory to ethanolic fermentation by strain 39E. However, the addition of acetate showed an unexpected stimulatory effect on ethanolic fermentation of sugars by strain 39E, enhancing ethanol production by up to 394%. Similar stimulatory effects of acetate were also evident in two other ethanologens tested, T. ethanolicus X514, and Clostridium thermocellum ATCC 27405, suggesting the potentially broad occurrence of acetate stimulation of ethanolic fermentation. Analysis of fermentation end product profiles further indicated that the uptake of exogenous acetate as a carbon source might contribute to the improved ethanol yield when 0.1% (w/v) yeast extract was added as a nutrient supplement. In contrast, when yeast extract was omitted, increases in sugar utilization appeared to be the likely cause of higher ethanol yields, suggesting that the characteristics of acetate stimulation were growth condition-dependent. Further understanding of the physiological and metabolic basis of the acetate stimulation effect is warranted for its potential application in improving bioethanol fermentation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号