首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body size and thermal tolerance clines in Drosophila melanogaster occur along the east coast of Australia. However the extent to which temperature affects the genetic architecture underlying the observed clinal divergence remains unknown. Clinal variation in these traits is associated with cosmopolitan chromosome inversions that cline in D. melanogaster. Whether this association influences the genetic architecture for these traits in D. melanogaster is unclear. Drosophila simulans shows linear clines in body size, but nonlinear clines in cold resistance. Clinally varying inversions are absent in D. simulans. Line-cross and clinal analyses were performed between tropical and temperate populations of D. melanogaster and D. simulans from the east coast of Australia to investigate whether clinal patterns and genetic effects contributing to clinal divergence in wing centroid size, thorax length, wing-to-thorax ratio, cold and heat resistance differed under different developmental temperatures (18 °C, 25 °C, and 29 °C). Developmental temperature influenced the genetic architecture in both species. Similarities between D. melanogaster and D. simulans suggest clinally varying inversion polymorphisms have little influence on the genetic architecture underlying clinal divergence in size in D. melanogaster. Differing genetic architectures across different temperatures highlight the need to consider different environments in future evolutionary and molecular studies of phenotypic divergence.  相似文献   

2.
3.
The geography of adaptive genetic variation is crucial to species conservation yet poorly understood in marine systems. We analyse the spatial scale of genetic variation in traits that broadly display adaptation throughout the range of a highly dispersive marine species. We conducted common garden experiments on the Atlantic silverside, Menidia menidia, from 39 locations along its 3000 km range thereby mapping genetic variation for growth rate, vertebral number and sex determination. Each trait displayed unique clinal patterns, with significant differences (adaptive or not) occurring over very small distances. Breakpoints in the cline differed among traits, corresponding only partially with presumed eco-geographical boundaries. Because clinal patterns are unique to each selected character, neutral genes or those coding for a single character cannot serve as proxies for the genetic structure as a whole. Conservation plans designed to protect essential genetic subunits of a species will need to account for such complex spatial structures.  相似文献   

4.
The cosmopolitan inversion In(3R)Payne in Drosophila melanogaster decreases in frequency with increasing distance from the equator on three continents, indicating it is subject to strong natural selection. We investigated patterns of genetic variation and linkage disequilibrium (LD) in 24 molecular markers located within and near In(3R)Payne to determine if different parts of the inversion responded to selection the same way. We found reduced variation in the markers we used compared to others distributed throughout the genome, consistent with the inversion having a relatively recent origin (相似文献   

5.
Latitudinal genetic clines in body size are common in many ectotherm species and are attributed to climatic adaptation. Here, we use Quantitative Trait Loci (QTL) mapping to identify genomic regions associated with adaptive variation in body size in natural populations of Drosophila melanogaster from extreme ends of a cline in South America. Our results show that there is a significant association between the positions of QTL with strong effects on wing area in South America and those previously reported in a QTL mapping study of Australian cline end populations (P < 0.05). In both continents, the right arm of the third chromosome is associated with QTL with the strongest effect on wing area. We also show that QTL peaks for wing area and thorax length are associated with the same genomic regions, indicating that the clinal variation in the body size traits may have a similar genetic basis. The consistency of the results found for the South American and Australian cline end populations indicate that the genetic basis of the two clines may be similar and future efforts to identify the genes producing the response to selection should be focused on the genomic regions highlighted by the present work.  相似文献   

6.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

7.
Hoffmann AA  Weeks AR 《Genetica》2007,129(2):133-147
Drosophila melanogaster invaded Australia around 100 years ago, most likely through a northern invasion. The wide range of climatic conditions in eastern Australia across which D. melanogaster is now found provides an opportunity for researchers to identify traits and genes that are associated with climatic adaptation. Allozyme studies indicate clinal patterns for at least four loci including a strong linear cline in Adh and a non-linear cline in alpha-Gpdh. Inversion clines were initially established from cytological studies but have now been validated with larger sample sizes using molecular markers for breakpoints. Recent collections indicate that some genetic markers (Adh and In(3R)Payne) have changed over the last 20 years reflecting continuing evolution. Heritable clines have been established for quantitative traits including wing length/area, thorax length and cold and heat resistance. A cline in egg size independent of body size and a weak cline in competitive ability have also been established. Postulated clinal patterns for resistance to desiccation and starvation have not been supported by extensive sampling. Experiments under laboratory and semi-natural conditions have suggested selective factors generating clinal patterns, particularly for reproductive patterns over winter. Attempts are being made to link clinal variation in traits to specific genes using QTL analysis and the candidate locus approach, and to identify the genetic architecture of trait variation along the cline. This is proving difficult because of inversion polymorphisms that generate disequilibrium among genes. Substantial gaps still remain in linking clines to field selection and understanding the genetic and physiological basis of the adaptive shifts. However D. melanogaster populations in eastern Australia remain an excellent resource for understanding past and future evolutionary responses to climate change.  相似文献   

8.
Despite a dramatic increase in empirical estimates of phenotypic selection over the past two decades, we remain remarkably ignorant about variation in the multivariate fitness surfaces that shape the adaptive landscape. We develop a novel approach for quantifying patterns of spatial and/or temporal variation in multivariate selection that directly compares vectors of linear selection gradients (beta) and matrices of nonlinear selection gradients (gamma) that describe the multivariate fitness surface in each population. We apply this approach to estimates of sexual selection on a suite of cuticular hydrocarbons (CHCs) in males and females from nine geographic populations of Drosophila serrata. In males, variation in linear sexual selection was associated with the presence of the related species Drosophila birchii, suggesting that female mate preferences for male CHCs differ between sympatry and allopatry. This is consistent with previous experimental results suggesting that reproductive character displacement of male CHCs has resulted from selection caused by the presence of D. birchii. No significant associations were found for nonlinear sexual selection in males. In females, large-scale variation in both linear and nonlinear sexual selection was negatively associated with assumed-neutral population genetic structure, suggesting a key role for chance events in male mate preference divergence.  相似文献   

9.
Clinal variation has been described in a number of inversions in Drosophila but these clines are often characterized by cytological techniques using small sample sizes, and associations with specific genes are rarely considered. Here we have developed a molecular assay for In(3R)Payne in Drosophila melanogaster from eastern Australia populations. It shows in repeated samples that the inversion cline is very tightly associated with latitude and is almost fixed in tropical populations while relatively rare in temperate populations. This steep cline has shifted in position in the last 20 years. The heat shock gene, hsr-omega, located centrally inside the inversion sequence, shows a different clinal pattern to In(3R)Payne. These results suggest strong ongoing selection on In(3R)Payne over the last 100 years since the colonization of Australia that is partly independent of hsr-omega.  相似文献   

10.
The ability of virgin Drosophila melanogaster adults to retain eggs is thought to be an adaptation to persisting in temperate areas, based on differences in this trait between European and African populations, and based on seasonal changes in this trait in France. By retaining eggs in the absence of males and under conditions of poorer nutrition (conditions common in temperate areas during colder months), females reduce the wastage of resources and increase their probability of surviving spring into summer, enabling them to initiate summer population expansions. To test for variation in virgin egg retention along a climatic gradient, we characterized clinal variation in strains collected from eastern Australia extending from temperate Tasmania to tropical northern Queensland. Despite testing a large number of strains and repeated testing of the cline ends, we did not detect any evidence for clinal variation in virgin egg retention. Therefore although D. melanogaster in temperate Australia overwinter at the adult stage, there is no evidence for selection on virgin retention capacity producing clinal patterns. This contrasts with other evidence for clinal variation in egg production patterns over winter.  相似文献   

11.
There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.  相似文献   

12.
Patterns of climatic adaptation in drosophila and other insects have largely been inferred from laboratory comparisons of traits that vary clinally. Here, we extend this research to comparisons under semi-natural conditions. To test for clinal variation in reproductive patterns and survival over winter, Drosophila melanogaster populations were initiated from seven collection sites along the eastern coast of Australia, ranging from tropical to temperate regions. The fecundity and survival of these populations were monitored in field cages at a temperate location until all adults had died more than 5 months later. Total fecundity showed a curvilinear relationship with latitude, due to higher egg production by high- and low-latitude populations. Adults from temperate locations survived winter conditions better than those from subtropical populations but not tropical ones. There was a linear cline in the timing of egg production: temperate populations produced eggs later than populations from lower latitudes. This cline is likely to be adaptive because egg-to-adult viability experiments indicated that only eggs laid in spring developed successfully to the adult stage. There was no evidence for climatic adaptation in the immature stages. The adult mortality rate increased gradually over winter, and in some populations was also correlated with the minimum ambient temperature. These results indicate that adaptation to winter conditions in D. melanogaster has involved shifts in reproductive patterns.  相似文献   

13.
Abstract. Latitudinal clines provide natural systems that may allow the effect of natural selection on the genetic variance to be determined. Ten clinal populations of Drosophila serrata collected from the eastern coast of Australia were used to examine clinal patterns in the trait mean and genetic variance of the life-history trait egg-to-adult development time. Development time significantly lengthened from tropical areas to temperate areas. The additive genetic variance for development time in each population was not associated with latitude but was associated with the population mean development time. Additive genetic variance tended to be larger in populations with more extreme development times and appeared to be consistent with allele frequency change. In contrast, the nonadditive genetic variance was not associated with the population mean but was associated with latitude. Levels of nonadditive genetic variance were greatest in the region of the cline where the gradient in the change in mean was greatest, consistent with Barton's (1999) conjecture that the generation of linkage disequilibrium may become an important component of the genetic variance in systems with a spatially varying optimum.  相似文献   

14.
A Das  B N Singh 《Génome》1991,34(4):618-625
To study the genetic differentiation and inversion clines in Indian natural populations of Drosophila melanogaster, 14 natural populations (6 from the north and 8 from the south) were screened for chromosome inversions. The chromosomal analysis revealed the presence of 23 paracentric inversions, which include 4 common cosmopolitan, 4 rare cosmopolitan, 2 recurrent endemic, and 13 unique endemic (new inversions detected for the first time) inversions. The difference in karyotype frequencies between populations from the north and south were highly significant and the level of inversion heterozygosity was higher in populations from the south. Statistically significant negative correlations were found between each of the four common cosmopolitan inversions and latitude. These findings are in accord with results from other worldwide geographic regions and show that Indian populations of D. melanogaster have undergone considerable genetic differentiation at the level of inversion polymorphism.  相似文献   

15.
In Drosophila, chromosomal polymorphism due to paracentric inversions is very common and constitutes an adaptive character. The degree of chromosomal variability varies in different species and also in different populations of the same species. Chromosomal polymorphism in Indian natural populations of three species, D. melaonogaster, D. ananassae and D. bipectinata which belong to the melanogaster species group has been studied and the quantitative data on frequency of inversions have been reported. Behaviour of chromosome inversions has also been studied in laboratory conditions. The present review summarises the work done on inversion polymorphism in Indian populations of three species which clearly demonstrates that these three species vary in their patterns of inversion polymorphism and have evolved different mechanisms for adjustment to their environments although they belong to the same species group.  相似文献   

16.
Chromosomal inversions are ubiquitous in nature and of great significance for understanding adaptation and speciation. Inversions were the first markers used to investigate the genetic structure of natural populations, leading to the concept of coadapted gene complexes and theories concerning founder effects and genetic drift in small populations. However, we still lack elements of a general theory accounting for the origins and distribution of inversions in nature. Here, we use computer simulations to show that a "mixed geographic mode" of evolution involving allopatric separation of populations followed by secondary contact and gene flow generates chromosomal divergence by natural selection under wider conditions than previous hypotheses. This occurs because inversions arising in allopatry contain a full complement of locally adapted genes. Once gene flow ensues, reduced recombination within inversions keeps these favorable genotypic combinations intact, resulting in inverted genomic regions being favored over collinear regions. This process allows inversions to establish to high frequencies. Our model can account for several classic patterns in the geographic distribution of inversions and highlights how selection on standing genetic variation allows rapid chromosomal evolution without the waiting time for new mutations. As inversion differences often separate closely related taxa, mixed modes of divergence could be common.  相似文献   

17.
Latitudinal clines have been demonstrated for many quantitative traits in Drosophila and are assumed to be due to climatic selection. However, clinal studies are often performed in species of Drosophila that contain common cosmopolitan inversion polymorphisms that also show clinal patterns. These inversion polymorphisms may be responsible for much of the observed clinal variation. Here, we consider latitudinal clines for quantitative traits in Drosophila simulans from eastern Australia. Drosophila simulans does not contain cosmopolitan inversion polymorphisms, so allows the study of clinal selection on quantitative traits that are not confounded by associations with inversions. Body size showed a strong linear cline for both females and males. Starvation resistance exhibited a weak linear cline in females, whereas chill-coma recovery exhibited a significant nonlinear cline in females only. No clinal pattern was evident for development time, male chill-coma recovery, desiccation or heat resistance. We discuss these results with reference to the role inversion polymorphisms play in generating clines in quantitative traits of Drosophila.  相似文献   

18.
Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that may result in populations showing different selection responses when faced with environmental change.  相似文献   

19.
Unlike populations of many terrestrial species, marine populations often are not separated by obvious, permanent barriers to gene flow. When species have high dispersal potential and few barriers to gene flow, allopatric divergence is slow. Nevertheless, many marine species are of recent origin, even in taxa with high dispersal potential. To understand the relationship between genetic structure and recent species formation in high dispersal taxa, we examined population genetic structure among four species of sea urchins in the tropical Indo-West Pacific that have speciated within the past one to three million years. Despite high potential for gene flow, mtDNA sequence variation among 200 individuals of four species in the urchin genus Echinometra shows a signal of strong geographic effects. These effects include (1) substantial population heterogeneity; (2) lower genetic variation in peripheral populations; and (3) isolation by distance. These geographic patterns are especially strong across scales of 5000-10,000 km, and are weaker over scales of 2500-5000 km. As a result, strong geographic patterns would not have been readily visible except over the wide expanse of the tropical Pacific. Surface currents in the Pacific do not explain patterns of gene flow any better than do patterns of simple spatial proximity. Finally, populations of each species tend to group into large mtDNA regions with similar mtDNA haplotypes, but these regional boundaries are not concordant in different species. These results show that all four species have accumulated mtDNA differences over similar spatial and temporal scales but that the precise geographic pattern of genetic differentiation varies for each species. These geographic patterns appear much less deterministic than in other well-known coastal marine systems and may be driven by chance and historical accident.  相似文献   

20.
Stress resistance traits in Drosophila often show clinal variation. Although these patterns suggest selection, there is generally no attempt to test how large differences at the geographical level are relative to levels of variation within and between local populations. Here we compare these levels in D. melanogaster from temperate Tasmania versus tropical northern Queensland by focusing on adult resistance to desiccation, cold and starvation stress, as well as associated traits (size, lipid content). For starvation and desiccation resistance, levels of variation were highest among strains from the same population. whereas there was little differentiation among local populations and a low level of differentiation at the geographic level. For adult cold resistance, there was local differentiation and strain variation but no geographic variation. For size (thorax length), geographic differentiation was higher despite some overlap among strains from the tropical and temperate locations. Finally, for lipid levels there was only evidence for variation among strains. The low level of differentiation among geographic locations for stress resistance was further verified with the characterization of isofemale strains from 18 locations along a coastal transect extending from Tasmania to northern Queensland. Crosses among some of the isofemale strains showed that results were not confounded by inbreeding effects. Strains derived from a cross between a tropical and temperate strain differed for all traits, and variation among strains for body size was higher than strain variation within the geographic regions. Unlike in previous studies, lipid content and starvation resistance were not correlated in any set of strains, but there was a correlation between cold resistance and lipid content. There was also a correlation between desiccation resistance and size but only in the geographic cross strains. These findings suggest a large amount of variation in stress resistance at the population level and inconsistent correlation patterns across experimental approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号