首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most females have random X-chromosome inactivation (XCI), defined as an equal likelihood for inactivation of the maternally- or paternally-derived X chromosome in each cell. Several X-linked disorders have been associated with a higher prevalence of non-random XCI patterns, but previous studies on XCI patterns in Aicardi syndrome were limited by small numbers and older methodologies, and have yielded conflicting results. We studied XCI patterns in DNA extracted from peripheral blood leukocytes of 35 girls with typical Aicardi syndrome (AIC) from 0.25 to 16.42 years of age, using the human androgen receptor assay. Data on 33 informative samples showed non-random XCI in 11 (33%), defined as a >80:20% skewed ratio of one versus the other X chromosome being active. In six (18%) of these, there was a >95:5% extremely skewed ratio of one versus the other X chromosome being active. XCI patterns on maternal samples were not excessively skewed. The prevalence of non-random XCI in Aicardi syndrome is significantly different from that in the general population (p < 0.0001) and provides additional support for the hypothesis that Aicardi syndrome is an X-linked disorder. We also investigated the correlation between X-inactivation patterns and clinical severity and found that non-random XCI is associated with a high neurological composite severity score. Conversely, a statistically significant association was found between random XCI and the skeletal composite score. Correlations between X-inactivation patterns and individual features were made and we found a significant association between vertebral anomalies and random XCI.  相似文献   

2.

Introduction  

The majority of autoimmune diseases such as rheumatoid arthritis (RA) and autoimmune thyroid diseases (AITDs) are characterized by a striking female predominance superimposed on a predisposing genetic background. The role of extremely skewed X-chromosome inactivation (XCI) has been questioned in the pathogenesis of several autoimmune diseases.  相似文献   

3.
4.
The Polycomb group (PcG) proteins are thought to silence gene expression by modifying chromatin. The Polycomb repressive complex 2 (PRC2) plays an essential role in mammalian X-chromosome inactivation (XCI), a model system to investigate heritable gene silencing. In the mouse, two different forms of XCI occur. In the preimplantation embryo, all cells undergo imprinted inactivation of the paternal X-chromosome (Xp). During the peri-implantation period, cells destined to give rise to the embryo proper erase the imprint and randomly inactivate either the maternal X-chromosome or the Xp; extraembryonic cells, on the other hand, maintain imprinted XCI of the Xp. PRC2 proteins are enriched on the inactive-X during early stages of both imprinted and random XCI. It is therefore thought that PRC2 contributes to the initiation of XCI. Mouse embryos lacking the essential PRC2 component EED harbor defects in the maintenance of imprinted XCI in differentiating trophoblast cells. Assessment of PRC2 requirement in the initiation of XCI, however, has been hindered by the presence of maternally derived proteins in the early embryo. Here we show that Eed/ embryos initiate and maintain random XCI despite lacking any functional EED protein prior to the initiation of random XCI. Thus, despite being enriched on the inactive X-chromosome, PcGs appear to be dispensable for the initiation and maintenance of random XCI. These results highlight the lineage- and differentiation state–specific requirements for PcGs in XCI and argue against PcG function in the formation of the facultative heterochromatin of the inactive X-chromosome.  相似文献   

5.

Background

X-chromosome inactivation (XCI) results in the silencing of most genes on one X chromosome, yielding mono-allelic expression in individual cells. However, random XCI results in expression of both alleles in most females. Allelic imbalances have been used genome-wide to detect mono-allelically expressed genes. Analysis of X-linked allelic imbalance in females with skewed XCI offers the opportunity to identify genes that escape XCI with bi-allelic expression in contrast to those with mono-allelic expression and which are therefore subject to XCI.

Results

We determine XCI status for 409 genes, all of which have at least five informative females in our dataset. The majority of genes are subject to XCI and genes that escape from XCI show a continuum of expression from the inactive X. Inactive X expression corresponds to differences in the level of histone modification detected by allelic imbalance after chromatin immunoprecipitation. Differences in XCI between populations and between cell lines derived from different tissues are observed.

Conclusions

We demonstrate that allelic imbalance can be used to determine an inactivation status for X-linked genes, even without completely non-random XCI. There is a range of expression from the inactive X. Genes escaping XCI, including those that do so in only a subset of females, cluster together, demonstrating that XCI and location on the X chromosome are related. In addition to revealing mechanisms involved in cis-gene regulation, determining which genes escape XCI can expand our understanding of the contributions of X-linked genes to sexual dimorphism.  相似文献   

6.
7.
8.
9.
DNA-mediated transformation of hypoxanthine guanine phosphoribosyl transferase (HPRT)-deficient cells was used to assess the state of the X chromosome Hprt gene in spermatogenic cells. It had been shown previously that DNA from the inactive X chromosome of somatic cells functions poorly or not at all in HPRT transformation, indicating that DNA modification is involved in somatic cell X chromosome inactivation (XCI). In contrast, DNA from mature sperm does function in HPRT transformation suggesting that DNA modification may not be the basis of XCI in mature sperm. In this paper, transformation of HPRT mouse and hamster cells has been performed to test the nature of XCI during earlier stages of spermatogenesis. DNA from these developing murine germ cells was shown to be capable of HPRT transformation, extending the observation that XCI in sperm does not appear to involve a DNA modification. We also show here that DNA from mature sperm of marsupials functions in HPRT transformation, a result consistent with a role for sperm XCI in the evolution of somatic X inactivation.  相似文献   

10.
X-chromosome inactivation (XCI) is an important mechanism employed by mammalian XX female cells to level X-linked gene expression with that of male XY cells. XCI occurs early in development as the pluripotent cells of the inner cell mass (ICM) in blastocysts successively differentiate into cells of all three germ layers. X-chromosome reactivation (XCR), the reversal of XCI, is critical for germ cell formation as a mechanism to diversify the X-chromosome gene pool. Here we review the characterization of XCR, and further explore its natural occurrence during development and the in vitro models of cellular reprogramming. We also review the key regulators involved in XCI for their role in suppressing the active histone marks and the genes in the active chromosome for their inhibition of X inactivation signals.Key words: X-chromosome reactivation, RNF12, reprogramming, primordial germ cells, iPS cellsX-chromosome inactivation (XCI) is an essential process occurring in female XX cells as a dosage compensation measure during development.1 It ensures balanced X-chromosome-encoded proteins in male and female cells, and occurs randomly during early development, thus accounting for the mosaicism observed in female somatic cells. Once the cell has inactivated one of the X chromosomes, the pattern is maintained throughout the subsequent series of cell divisions. In mice, the paternal inactive X chromosome (Xi) is maintained throughout the early cleavage until the blastocyst stage, where cells of the inner cell mass (ICM) reactivate the inactive X chromosome.2 At subsequent phases of early development, humans and mice share the pattern of XCI. Epiblast cells randomly inactivate one X chromosome, while the primordial germ cells (PGCs) reactivate the Xi during their migration to the genital ridges.36 Interestingly, murine extra-embryonic trophoblast cells show non-random inactivation of the paternal X chromosome maintained in trophectoderm.6,7 This pattern is, however, not conserved, as human trophectoderm cells randomly inactivate the paternal or maternal X chromosome. In addition to the PGCs and early developing embryo, cells cultured under defined conditions or undergoing reprogramming show X-chromosome reactivation (XCR).8 XCI has been extensively studied, while XCR is not well-understood, mainly due to the lack of easily accessible models. Here, we will review the developmental process of XCR and molecular mechanism involved in XCI and XCR.  相似文献   

11.
Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.  相似文献   

12.
An increase in extremely skewed X-chromosome inactivation (XCI) (> or = 90%) among women who experienced recurrent spontaneous abortion (RSA) has been previously reported. To further delineate the etiology of this association, we have evaluated XCI status in 207 women who experience RSA. A significant excess of trisomic losses was observed among the women who had RSA with skewed XCI versus those without skewed XCI (P=.02). There was also a significant excess of boys among live births in this group (P=.04), which is contrary to expectations if the cause of skewed XCI was only that these women carried X-linked lethal mutations. To confirm the association between skewed XCI and the risk of trisomy, an independent group of 53 women, ascertained on the basis of a prenatal diagnosis of trisomy mosaicism, were investigated. Only cases for which the trisomy was shown to be of maternal meiotic origin were included. The results show a significantly higher level of extreme skewing (> or = 90%) in women whose pregnancies involved placental trisomy mosaicism (17%) than in either of two separate control populations (n=102 and 99) (P=.02 compared with total control subjects). An additional 11 cases were ascertained on the basis of one or more trisomic-pregnancy losses. When all women in the present study with a trisomic pregnancy (n=103) were considered together, skewed XCI was identified in 18%, as compared with 7% in all controls (n=201) (P=.005). This difference was more pronounced when a cutoff of extreme skewing of 95% was used (10% vs. 1.5% skewed; P=.002). Maternal age was not associated with skewing in either the patient or control populations and therefore cannot account for the association with trisomy. Previous studies have shown that a reduced ovarian reserve is associated with increased risk of trisomic pregnancies. We hypothesize that the association between skewed XCI and trisomic pregnancies is produced by a common mechanism that underlies both and that involves a reduction of the size of the follicular pool.  相似文献   

13.
X chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell via a random process. Skewed XCI is relevant to many diseases, but the mechanism leading to it remains unclear. Human embryonic stem cells (hESCs) derived from the inner cell mass (ICM) of blastocyst-stage embryos have provided an excellent model system for understanding XCI initiation and maintenance. Here, we derived hESC lines with random or skewed XCI patterns from poor-quality embryos and investigated the genome-wide copy number variation (CNV) and loss of heterozygosity (LOH) patterns at the early passages of these two groups of hESC lines. It was found that the average size of CNVs on the X chromosomes in the skewed group is twice as much as that in the random group. Moreover, the LOH regions of the skewed group covered the gene locus of either XIST or XACT, which are master long non-coding RNA (lncRNA) effectors of XCI in human pluripotent stem cells. In conclusion, our work has established an experimentally tractable hESC model for study of skewed XCI and revealed an association between X chromosome instability and skewed XCI.  相似文献   

14.
In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient''s exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.  相似文献   

15.
X-chromosome inactivation (XCI) is a pivotal epigenetic mechanism involved in the dosage compensation of X-linked genes between males and females. In any given cell, the process of XCI in early female development is thought to be random across alleles and clonally maintained once established. Recent studies, however, suggest that XCI might not always be random and that skewed inactivation may become more prevalent with age. The factors influencing such XCI skewing and its changes over time are largely unknown. To elucidate the influence of stochastic, heritable and environmental factors in longitudinal changes in XCI, we examined X inactivation profiles in a sample of monozygotic (MZ) (n = 23) and dizygotic (DZ) (n = 22) female twin-pairs at ages 5 and 10 years. Compared to MZ twins who were highly concordant for allelic XCI ratios, DZ twins showed much lower levels of concordance. Whilst XCI patterns were moderately stable between ages 5 and 10 years, there was some drift over time with an increased prevalence of more extreme XCI skewing at age 10. To our knowledge, this study represents the earliest longitudinal assessment of skewed XCI patterns, and suggests that skewed XCI may already be established in early childhood. Our data also suggest a link between MZ twinning and the establishment of allelic XCI ratios, and demonstrate that acquired skewing in XCI after establishment is primarily mediated by stochastic mechanisms. These data have implications for our understanding about sex differences in complex disease, and the potential causes of phenotypic discordance between MZ female twins.  相似文献   

16.
17.
Incontinentia pigmenti is an X-linked genodermatosis, lethal in males. Affected females survive because of X-chromosome dizygosity and negative selection of cells carrying the mutant X-chromosome, and for this reason the skewed X inactivation pattern is often used to confirm the diagnosis. The most frequent mutation is a deletion of part of the NEMO gene (NEMOΔ410), although other mutations have been reported. Mutations of NEMO which do not abolish NF-κB activity totally permit male survival, causing an allelic variant of IP called hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID). We present a non-classical IP female patient who also suffered transient immunodeficiency because of a late and progressive selection against peripheral blood cells carrying an active mutated X-chromosome. This finding suggests that in the absence of known mutation the X-inactivation studies used in genetic counselling can induce mistakes with some female patients. At the age of 3 years and 6 months, all immunodeficiency signs disappeared, and the X-chromosome inactivation pattern was completely skewed. The low T cell proliferation and CD40L expression corroborate the important role of NEMO/ NF-κB pathway in T cell homeostasis. The decreased NEMO protein amount and the impaired IkBα degradation suggest that this new mutation, NM_003639: c.1049dupA, causes RNA or protein instability. To our knowledge, this is the first time that selection against the mutated X-chromosome in X-linked disease has been documented in vivo.  相似文献   

18.
19.

Background

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder caused by mutations in the ABCD1 gene. Approximately 20% of X-ALD female carriers may develop neurological symptoms. Skewed X chromosome inactivation (XCI) has been proposed to influence the manifestation of symptoms in X-ALD carriers, but data remain conflicting so far. We identified a three generation kindred, with five heterozygous females, including two manifesting carriers. XCI pattern and the ABCD1 allele expression were assessed in order to determine if symptoms in X-ALD carriers could be related to skewed XCI and whether skewing within this family is more consistent with genetically influenced or completely random XCI.

Results

We found a high frequency of skewing in this family. Four of five females had skewed XCI, including two manifesting carriers favoring the mutant allele, one asymptomatic carrier favoring the normal allele, and one female who was not an X-ALD carrier. Known causes of skewing, such as chromosomal abnormalities, selection against deleterious alleles, XIST promoter mutations, were not consistent with our results.

Conclusions

Our data support that skewed XCI in favor of the mutant ABCD1 allele would be associated with the manifestation of heterozygous symptoms. Furthermore, XCI skewing in this family is genetically influenced. However, the underlying mechanism remains to be substantiated by further experiments.  相似文献   

20.
A DNA marker closely linked to the factor IX (haemophilia B) gene   总被引:4,自引:0,他引:4  
Summary We have isolated a DNA segment, pX58dIIIc, from an X-chromosome library which identifies an SstI restriction fragment length polymorphism (RFLP) at locus DXS99. Linkage analysis in six informative families has shown that the DXS99 locus lies close to the factor IX gene (F9). No recombination was detected between these loci in 39 informative meioses (Z=9.79, =0.0). Therefore, DXS99 will be useful as a DNA marker for the assessment of carrier status in families with haemophilia B where intragenic markers are not informative. Heterozygosity at DXS99 is approximately 50% and, in conjunction with the RFLPs at F9, 90% of females at risk for being haemophilia B carriers should be diagnosed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号