首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

2.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

3.
Sialyl Lewis X ganglioside analogues containing 5-acetamido-3,5-dideoxy-l-arabino-2-heptulopyranosylonic acid (C7-Neu5Ac), 5-acetamido-3,5-dideoxy-d-galacto-2-octulopyranosylonic acid (C8-Neu5Ac), and 5-acetamido-3,5-dideoxy-l-glycero-d-galacto-1-2-nonulopyranosylonic acid (8-epi-Neu5Ac) in place ofN-acetylneuraminic acid (Neu5Ac) have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl--d-galactopyranoside with the phenyl or methyl 2-thioglycoside derivatives of the respective sialic acids, usingN-iodosuccinimide (NIS)-trifluoromethanesulfonic acid as a promoter in acetonitrile, gave the three required 2-(trimethylsilyl)ethyl (2S)-sialyl-(2 3)--galactopyranosides. These were converted viaO-benzoylation, selective transformation of the 2-(trimethylsilyl)ethyl group to acetyl, and introduction of the methylthio group with methylthiotrimethylsilane into the corresponding glycosyl donors. Glycosylation of 2-(trimethylsilyl)ethylO-(2,3,4-tri-O-benzyl--l-fucopyranosyl)-(1 3)-O-(2-acetamido-6-O-benzyl-2-deoxy--d-glucopyranosyl)-(1 3)-2,4,6-tri-O-benzyl--d-galactopyranoside with these donors in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) afforded the expected -glycosides, which were converted into the corresponding -trichloroacetimidates, and these, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol, gave the required -glycosides. Finally, these were transformed via selective reduction of the azide group, condensation with octadecanoic acid,O-deacylation, and de-esterification into the target compounds in good yields.  相似文献   

4.
Zusammenfassung Verglichen mit 1- und 2-Naphthyl--d-glucosid,--d-galactosid,--d-glucuronid,--d-N-acetylglucosaminid,--d-glucosid,--d-galactosid und--d-mannosid werden 1- und 2-Naphthyl--l-fucosid schneller oder im gleichen Ausmaß von Homogenaten verschiedener Rattenorgane hydrolysiert. Trotzdem fällt der histochemische Nachweis der -l-Fucosidasen methodenunabhängig im Gegensatz zu dem der anderen Glykosidasen überwiegend negativ aus. Ursache dafür ist die massive Hemmung der -l-Fucosidase durch Aldehydfixation und Diazoniumsalze; die Inhibitionsrate liegt bei 90% bzw. zwischen 85 und 98%; die - und -d-Glucosidase, - und -d-Galactosidase, -d-Mannosidase, -d-Glucuronidase sowie -d-N-Acetylglucosaminidase werden durch Aldehydfixation oder Kuppler höchstens zu 70% gehemmt. Daher können 1- und 2-Naphthyl--l-fucosid für die histochemische Darstellung der -l-Fucosidase nicht einschränkungslos empfohlen werden. Kleine Mengen Dimethylformamid hemmen die meisten Glykosidasen nicht.Für biochemische Messungen der -l-Fucosidase eignet sich speziell 1-Naphthyl--l-fucosid und läßt sich an Stelle von p-Nitrophenyl--l-fucosid werwenden. Bei der fluorometrischen Untersuchung der -l-Fucosidase in Rattenorganen mit dem 2-Naphthylderivat ergeben sich bemerkenswerte Aktivitätsunterschiede.
Suitability of naphthyl--l-fucosides for the investigation of -l-fucosidases
Summary In comparison with 1- and 2-naphthyl -d-glucoside, -d-galactoside, -d-glucuronide, -d-N-acetylglucosaminide, -d-glucoside, -d-galactoside and -d-mannoside 1- and 2-naphthyl -l-fucoside are hydrolyzed more quickly or to the same extent by homogenates prepared from freezedried cryostate sections of various rat organs. Nevertheless, when the fucosides are employed for the histochemical demonstration of -l-fucosidase mostly negative data were obtained independent on the method used, whereas all other naphthyl glycosides deliver positive results. The reasons for these discrepancies are the marked inhibition of -l-fucosidase by aldehyde fixation and diazonium salts. Then, -l-fucosidase activity is suppressed to 90% and between 85 and 98% respectively; the inhibition of - and -d-glucosidase, - and -d-galactosidase, -d-mannosidase, -d-glucuronidase and -d-N-acetylglucosaminidase by the fixative or coupling reagent does not exceed 70%. Therefore 1- and 2-naphthyl -l-fucoside cannot be recommended in general for histochemical purposes. Small amounts of dimethylformamide do not influence the activity of most of the glycosidases investigated.For biochemical measurements, however, especially 1-naphthyl -l-fucoside represents a suitable alternative in a fluorometric procedure instead of p-nitrophenyl -l-fucoside used for the photometric evaluation of -l-fucosidase. With the fluorometric method the enzyme was measured in rat organs, which posses remarkably different activities of -l-fucosidase.
  相似文献   

5.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

6.
A simple synthesis of octyl 3,6-di-O-(-d-mannopyranosyl)--d-mannopyranoside is described. The key features of the synthetic scheme are the formation of the -mannosidic linkage by 1-O-alkylation of 2,3,4,6-tetra-O-acetyl-,-d-mannopyranose with octyl iodide and glycosylation of unprotected octyl -d-mannopyranoside using limiting acetobromomannose. The trisaccharide is shown to be an acceptor forN-acetylglucosaminyltransferase-I with aK M of 585 µm.  相似文献   

7.
4-Methylumbelliferyl 6-O-benzyl--d-lactoside (6Bn-MU-Lac) and some related compounds were synthesizedvia different selective reactions including phase-transfer glycosylation. Their suitability as substrates for a fluorometric assay of ceramide glycanase (CGase) was evaluated. Among others, the 6Bn-MU-Lac, which is resistant to exogalactosidase, was found to be a suitable substrate for routine assay of the CGase activity. For American leech CGase, theK m value is 0.232 mM at pH 5. Abbreviations: CGase, ceramide glycanase; Gal, galactose; Glc, Glucose; Lac, lactose; MU, 4-methylumbelliferone; MU-Lac, 4-methylumbelliferyl -d-lactoside; bBn-Lac, 6-O-benzyl-lactose; 6Bn-MU-Lac, 4-methylumbelliferyl 6-Obenzyl--d-lactoside; 46Bd-MU-Lac, 4-methylumbelliferyl 4,6-O-benzylidene--d-lactoside; MU-Cel, 4-methylumbellifery -d-cellobioside; 46Bd-MU-Cel, 4-methylumbelliferyl 4,6-O-benzylidene--d-cellobioside; TLC, thin layer chromatography;1H-NMR, proton nuclear magnetic resonance; GSL, glycosphingolipids; CSA, 10-camphorsulfonic acid. See Scheme 1 for chemical structures.  相似文献   

8.
Transmannosylation from mannotriose (Man1-4Man1-4Man) to the 4-position at the nonreducing end N-acetylglucosaminyl residue ofN,N-diacetylchitobiose was regioselectively induced through the use of -d-mannanase fromAspergillus niger. The enzyme formed the trisaccharide Man1-4GlcNAc1-4GlcNAc (3.7% of the enzyme-catalysed net decrease ofN,N-diacetylchitobiose) from mannotriose as a donor andN,N-diacetylchitobiose as an acceptor. Mannobiose (Man1-4Man) was also shown to be useful as a donor substrate for the desired trisaccharide synthesis.Abbreviations Man d-mannose - (M n) (n=1–5) -linkedn-mer of mannose - GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1–4)-2-acetamido-2-deoxy-d-glucose  相似文献   

9.
The synthesis of the methyl - and -N-dansyl-d-galactosaminides is described using methyl ,-2-azido-2-deoxy-d-galactopyranoside as starting material. This was reduced to the corresponding methyl ,-2-amino-2-deoxy-d-galactopyranoside and then treated with dansyl chloride to yield a mixture of methyl ,-N-dansyl-d-galactosaminides which was separated into individual anomeric forms by flash chromatography on silica gel. Methyl -N-dansyl-d-galactosaminide was used as a fluorescent indicator ligand in continuous substitution titrations to determine the association constants of nonchromophoric carbohydrates with theN-acetyl-d-galactosamine specific lectin fromErythrina corallodendron.Abbreviations ECorL Erythrina corallodendron lectin - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside Dedicated to Hilde De Boeck (1958–1991).  相似文献   

10.
Imidazole fungicides such as imazalil, prochloraz, and triflurnizole and the triazole growth retardant paclobutrazol promote the shoot-inducing effect of exogenous cytokinins in Araceae, such as Spathiphyllum floribundum Schott and Anthurium andreanum Schott. The mechanism of their action could partially be based on the inhibition of gibberellic acid (GA) biosynthesis, because administration of GA3 inhibits the phenomenon completely in S. floribundum. Not only is the suppression of GA biosynthesis involved, but also the metabolism of endogenous cytokinins is significantly altered. Although the balance between isopentenyladenine, zeatin, dihydrozeatin, and their derivatives was shifted to distinguished directions by administration of BA and/or imazalil and/or GA3, no correlation between these changes in metabolic pathways and the number of shoots could be found. The metabolism of BA was not significantly altered by adding imazalil to the micropropagation medium of S. floribundum.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - [9R-5P]DHZ 9--d-ribofuranosyl-dihydrozeatin-monophosphate - [9R-5P]iP 6-isopentenyl-9--d-ribofuranosyladenine-monophosphate - [9R-5P]Z 9--d-ribofuranosyl-zeatin-monophosphate - [9G]BA 6-benzyl-9--d-glucopyranosyladenine - [9G]DHZ 9--d-glucopyranosyl-dihydrozeatin - [9G]iP 6-isopentenyl-9--d-glucopyranosyladenine - [9G]Z 9--d-glucopyranosyl-zeatin - [9R]BA 6-benzyl-9--d-ribofuranosyladenine - [9R]DHZ 9--d-ribofuranosyl-dihydrozeatin - [9R]iP 6-isopentenyl-9--d-ribofuranosyladenine - [9R]Z 9--d-ribofuranosyl-zeatin - BA 6-benzyladenine - DHZ dihydrozeatin - ES+ LC-MS/MS HPLC coupled Electrospray Tandem Mass Spectrometry - f.m. fresh mass - mT 6-(3-hydroxybenzyl)adenine - IMA imazalil - iP isopentenyladenine - NAA 1-naphthalene acetic acid - NFT Nutrient Film Technique - (OG)[9R]DHZ O--glucopyranosyl-9--d-ribofuranosyl-dihydrozeatin - (OG)[9R]Z O--d-glucopyranosyl-9--d-ribofuranosyl-zeatin - (OG)DHZ O--d-glucopyranosyl-dihydrozeatin - (OG)Z O--d-glucopyranosyl-zeatin - PAR Photosynthetic Active Radiation - PBZ paclobutrazol - PRO prochloraz - TDZ thidiazuron - TRI triflurnizole - Z zeatin  相似文献   

11.
Two trisaccharide glycosides,p-trifluoroacetamidophenylethyl 3-O-(2-acetamido-2-deoxy--d-galactopyranosyl)-2-O-(-l-fucopyranosyl)--d-galactopyranoside andp-trifluoroa-cetamidophenylethyl 2-O-(-l-fucopyranosyl)-3-O-(-d-galactopyranosyl)--d-galactopyranoside, corresponding to the human blood group A and B determinants, were synthesized. A key fucosylgalactosyl disaccharide derivative was glycosylated with galactosaminyl or galactosyl donors, respectively. Dimethyl (thiomethyl)sulfonium tetrafluoroborate was used for thioglycoside activation in coupling reactions.  相似文献   

12.
Cell suspension cultures ofSolanum tuberosum L. cv. Adretta were established from leaf-derived calluses. In the search for purine glucosylating activity, the metabolism of 6-benzylaminopurine was studied. The main metabolite of BA was isolated and identified as 6-benzylaminopurine 7--d-glucopyranoside indicating the occurrence of purine glucosylating activity.Abbreviations BA 6-Benzylaminopurine - [3G]BA BA 3--d-glucopyranoside - [7G]BA BA 7--d-glucopyranoside - [9G]BA BA 9--d-glucopyranoside - RA Radioactivity - R T Retention Time  相似文献   

13.
Summary Cellulase genes of the ruminant micro-organism Ruminococcus flavefaciens strain 186 have been cloned and expressed in Escherichia coli using the bacteriophage vector NM1149. Twenty-six clones showed expression of endo--1,4-d-glucanases and were divided into four groups according to their insert sizes of approximately 2, 3, 4 or 9 kilobases (kb). Two of the clones with 4 kb inserts also showed exo--1,4-d glucanase activity while two clones with 9 kb inserts showed -glucosidase activity. One of the clones with 9 kb inserts (M903) showed the activities of all three cellulase activities. In addition, two of the 4 kb-insert clones and one 9 kb-insert clone degraded Avicel (PH101).  相似文献   

14.
The conformation of brain proteolipid apoprotein (PLA) has been investigated using infrared spectroscopy and freeze-fracture electron microscopy. For this purpose, spectroscopic samples consisting of a mixture of liquid paraffin and wet protein have been prepared. These systems have allowed us to record the infrared spectra of PLA at neutral pH. The amide I and III regions reveal the existence of a predominantly -helical structure, as well as the presence of minor -strands and random coil forms. The effect of sonication and a non-denaturing detergent, (n-octyl--d-glucopyranoside), on the structure of the protein have also been investigated. Sonication produces an increase of the and unordered structures at the expense of the -helical conformation. These structural changes are enhanced in the presence of the non-ionic detergent n-octyl--d-glucopyranoside. Lipids protect the native protein structure from the effects of sonication. The aforementioned detergent changes the PLA conformation by increasing the -helical content at the expense of -sheet and random coil forms. Therefore the PLA structure seems to be similar to the structures of other proteins intrinsic to non-neural membranes. The effects investigated also suggest that PLA behaves in a conformationally flexible manner.  相似文献   

15.
-Glucuronidase from callus cultures of Scutellaria baicalensis Georgi was purified to apparent homogeneity by fractionated ammonium-sulfate precipitation and chromatography on diethylaminoethyl-cellulose, hydroxylapatite and baicalin-conjugated Sepharose 6B. A 650-fold purification was obtained by this purification system. When subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified protein migrated as a single band with a molecular mass of 55 kDa. We determined that the native enzyme has a molecular mass of 230 kDa using gel-filtration chromatography. These results suggested that the enzyme exists as a homotetramer composed of four identical 55-kDa subunits. The enzyme showed a broad pH optimum between 7.0 and 8.0. The K m values were 9 M, 10 M, 30 M and 40 M for luteolin 3 -O--d-glucuronide, baicalin, wogonin 7-O--d-glucoronide and oroxlin 7-O--d-glucuronide, respectively. The enzyme was most active with flavone 7-O--d-glucuronides.Abbreviations BA N6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - pI isoelectric point - R t retention time  相似文献   

16.
Summary Galactans, the storage polysaccharides in the perivitelline fluid of many snails showed a high degree of species-specificity as revealed by quantitative precipitin formations with lectins, polyclonal antisera, myeloma proteins as well as by the reactivity with the enzyme galactose oxidase. However, their chemical compositions were remarkably similar since thed-Gal residues were all linked 13 and 16 glycosidically.The specificity seemed to be related to the different degrees of branching in the various galactans but could also be due to some other minor constituents in some galactans such asl-galactose or phosphate.In this study a Radioimmunoassay was developed using the galactan of the snailLymnaea stagnalis to elucidate those differences which were only related to a unique distribution of the 13 and 16 linkages, since this galactan was composed exclusively ofd-galactose residues. The galactan was labeled by sequential oxidation with galactose oxidase and reduction with tritiated sodium borohydride. Inhibition of the binding of the labeled galactan to insolubilized antibodies was investigated by galactans of different species, their chemically modified products, andd-galactose-composed oligosaccharides of unambiguously identified structures.Inhibition byLymnaea stagnalis galactan was about 45 000 times that ofHelix pomatia galactan. The most complementary oligosaccharide found was -d-Gal13[-d-Gal16]-d-Gal11l-Gro, being about 200 times more effective thand-Gal. However, a fraction with molecular weights between 700 and 1000 isolated from the partially hydrolized galactan was still seven times more effective. From the reactivity of the antiserum with the different oligosaccharides tested the following structure was inferred which most likely represented the complete determinant recognized by the antiserum: -d-Gal13[-d-Gal16]-d-Gal16[-d-Gal13]-d-Gal1. This determinant seemed to be most common inLymnaea stagnalis galactan and its frequency of occurrence appears to correspond to the inhibitory potency of other snail galactans.  相似文献   

17.
The preparation of benzyl 2,3,6,2,6-penta-O-benzyl--d-lactoside, which is a key intermediate for chemical synthesis of oligosaccharide components of glycosphingolipids, was achieved by an improved method. The 3-O-p-methoxybenzyl and 3-O-methyl derivatives were prepared from benzyl 2,3,6,2,6-penta-O-benzyl--d-lactoside through stannylation. By using benzyl -d-lactoside as starting material, benzyl 3-O-methyl-, 3-O-benzyl- and 3-O-p-methoxybenzyl--d-lactoside were regioselectively synthesized using the same procedure.  相似文献   

18.
The crystalline cell surface layer (S-layer) from Bacillus stearothermophilis PV72 was used as a matrix for reversible immobilization of -d-galactosidase via disulphide bonds. In order to obtain an immobilization matrix stable towards acid, alkali and reducing agents such as dithiothreitol (DTT), the S-layer subunits were first cross-linked with glutaraldehyde. This was done in a way whereby 75% of the free amino groups remained unmodified, and then could be completely converted into sulphhydryl groups upon reaction with the monofunctional imidoester iminothiolane. After activation of the sulphhydryl groups with 2,2-dipyridyldisulphide, 550 g -d-galactosidase could be immobilized per milligram of S-layer protein, which corresponds to one -d-galactosidase molecule [relative molecular mass (Mr), 116000] per two S-layer subunits (Mr, 130 000). At least 90% of the sulphhydryl groups from the S-layer protein could be regenerated for further activation by cleaving the disulphide bonds with DTT. In comparative studies -d-galactosidase was linked to carbodiimide-activated carboxyl groups of the S-layer protein.Correspondence to: M. Sára  相似文献   

19.
An extracellular -glucosidase (EC 3.2.2.21) from the anaerobic fungus Piromyces sp. strain E2 was purified. The enzyme is a monomer with a molecular mass of 45 kDa and a pI of 4.15. The enzyme readily hydrolyzes p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, cellobiose, cellotriose, cellotetraose and cellopentaose but is not active towards Avicel, carboxymethylcellulose, xylan, p-nitrophenyl--d-galactoside and p-nitrophenyl--d-xyloside. To cleave p-nitrophenyl--d-glucoside the maximum activity is reached at pH 6.0 and 55°C, and the enzyme is stable up to 72 h at 40°C. Activity is inhibited by d-glucurono--lactone, cellobiose, sodium dodecyl sulfate, Hg2+ and Cu2+ cations. With p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, and. cellobiose as enzyme substrates, the K m and V max balues are 1.5 mM and 25.5 IU·mg-1, 1.1. mM and 133 IU·mg-1, and 0.05 mM and 55.6 IU·mg-1, respectively.  相似文献   

20.
The main polysaccharide component of the thickened cell walls in the storage parenchyma of Lupinus angustifolius L. cotyledons is a linear (1 4)--linked d-galactan, which is mobilised after germination (L.A. Crawshaw and J.S.G Reid, 1984, Planta 160, 449–454). The isolation from the germinated cotyledons of a -d-galactosidase or exo-(1 4)--d-galactanase with a high specificity for the lupin galactan is described. The enzyme, purified using diethylaminoethyl-cellulose, carboxymethyl-cellulose and affinity chromatography on lactose-agarose, gave two bands (major 60 kDa, minor 45 kDa) on sodium dodecyl sulphate-gel electrophoresis, and two similar bands on isoelectric focusing (major, pI 7.0, minor pI 6.7, both apparently possessing enzyme activity). The minor component cross-reacted with an antiserum raised against, and affinity-purified on, the major band. Both components had a common N-terminal sequence. The minor component was probably a degradation product of the major one. The enzyme had limited -galactosidase action, catalysing the hydrolysis of p-nitrophenyl--d-galactopyranoside and (1 4)- and (1 6)--linked galactobioses. Lactose [-d-galactopyranosyl-(1 4)-d-glucose] was hydrolysed only very slowly and methyl--d-galactopyranoside not at all. Lupin galactan was hydrolysed rapidly and extensively to galactose, whereas other cell-wall polysaccharides (xyloglucan and arabinogalactan) with terminal non-reducing -d-galactopyranosyl residues were not substrates. A linear (1 4)--linked galactopentaose was hydrolysed efficiently to the tetraose plus galactose, but further sequential removals of galactose to give the tetraose and lower homologues occurred more slowly. Galactose, -galactonolactone and Cu+2 were inhibitory. No endo--d-galactanase activity was detected in lupin cotyledonary extracts, whereas exo-galactanase activity varied pari passu with galactan mobilisation. Exo-galactanase protein was detected, by Western immunoblotting of cotyledon extracts, just before the activity could be assayed and then increased and decreased in step with the enzyme activity. The exo-galactanase is clearly a key enzyme in galactan mobilisation and may be the sole activity involved in depolymerising the dominant (1 4)--galactan component of the cell wall.Abbreviations CM carboxymethyl - DEAE diethylaminoethyl - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TLC thin-layer chromatography We wish to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the award of a studentship to M.S. Buckeridge, and the Government of São Paulo State, Brazil for granting him leave of absence. We are grateful to Dr. Amanda Heyller (Unilever Research Laboratory, Colworth House, Bedford, UK) for N-terminal sequence determinations, to Dr. Stuart Wilson (Stirling) for preparing gelatin SDS-gels and to Cristina Fanutti (Stirling) for purifying the xyloglucan oligosaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号