首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential labeling experiments were conducted with the above three reagents to label specific lysine residues. Thus pyridoxal phosphate was found to modify 2 lysine residues leading to an alteration of catalytic activity. At least 1 lysine residue has been reported previously to be modified by pyridoxal phosphate at the active site of glutamine synthetase (Whitley, E. J., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). By varying the pH and buffer, one or both residues could be modified. One of these lysine residues was associated with approximately 81% loss in activity after modification while modification of the second lysine residue led to complete inactivation of the enzyme. This second lysine was found to be the residue which reacted specifically with the ATP affinity label 5'-p-fluorosulfonylbenzoyladenosine. Lys-47 has been previously identified as the residue that reacts with this reagent (Pinkofsky, H. B., Ginsburg, A., Reardon, I., Heinrikson, R. L. (1984) J. Biol. Chem. 259, 9616-9622; Foster, W. B., Griffith, M. J., and Kingdon, H. S. (1981) J. Biol. Chem. 256, 882-886). Thiourea dioxide inactivated glutamine synthetase with total loss of activity and concomitant modification of a single lysine residue. The modified amino acid was identified as homoarginine by amino acid analysis. The lysine residue modified by thiourea dioxide was established by differential labeling experiments to be the same residue associated with the 81% partial loss of activity upon pyridoxal phosphate inactivation. Inactivation with either thiourea dioxide or pyridoxal phosphate did not affect ATP binding but glutamate binding was weakened. The glutamate site was implicated as the site of thiourea dioxide modification based on protection against inactivation by saturating levels of glutamate. Glutamate also protected against pyridoxal phosphate labeling of the lysine consistent with this residue being the common site of reaction with thiourea dioxide and pyridoxal phosphate.  相似文献   

2.
The chloroplastic glutamine synthetase of spinach leaves has been purified to homogeneity using affinity chromatography. This involves a tandem `reactive blue A-agarose' and `reactive red-A-agarose' as the final step in the procedure. This procedure results in a yield of 18 milligrams of pure glutamine synthetase per kilogram of starting material. The purity of our enzyme has been demonstrated on both one- and two-dimensional polyacrylamide gels.

Purified glutamine synthetase has a molecular weight of 360,000 daltons and consists of eight 44,000 dalton subunits. The Km is 6.7 millimolar for glutamate, 1.8 millimolar for ATP (synthetase assay), and 37.6 millimolar for glutamine (transferase assay). The isoelectric point is 6.5 and the pH optima are 7.3 in the synthetase assay and 6.4 in the transferase assay. The irreversible, competitive inhibitors methionine sulfoxamine and phosphinothricin have Ki values of 0.1 millimolar and 6.1 micromolar, respectively. Amino acid analysis has been carried out and the results compared with published analyses for other isoforms of glutamine synthetase.

  相似文献   

3.
I S Krishnan  R D Dua 《FEBS letters》1985,185(2):267-271
Preliminary chemical modification studies indicated the presence of tyrosine, carboxyl, arginine, histidine and the absence of serine and sulfhydryl residues at or near the active site of Clostridium pasteurianum glutamine synthetase. The conditions for tyrosine modification with tetranitromethane were optimized. The inactivation kinetics follow pseudo-first-order kinetics with respect to enzyme and second order with respect to modifier per active site. There was no inactivation at pH 6.5 suggesting the absence of thiol oxidation. The synthetase and transferase reactions followed the same pattern of inactivation on enzyme modification and both were equally protected by glutamate plus ATP. Thus tyrosine residues are present at the active site of the enzyme and are essential for both transferase and synthetase activities.  相似文献   

4.
Computer analysis of the active site of glutamine synthetase   总被引:2,自引:0,他引:2  
J D Gass  A Meister 《Biochemistry》1970,9(6):1380-1390
  相似文献   

5.
Stereochemical mapping of the active site of glutamine synthetase   总被引:1,自引:0,他引:1  
  相似文献   

6.
Sarcosine oxidase from Corynebacterium sp. U-96 is inhibited by iodoacetamide (IAM) and the inhibition is prevented by the substrate analog, sodium acetate. To elucidate the mechanism of inhibition of the enzyme by IAM, we determined the amino acid sequences around the IAM-reactive cysteine residues, and the effects of the modification on the enzyme activity and the oxidation-reduction of the FAD moieties of the enzyme. The enzyme was specifically labeled with [14C]IAM, and the labeled subunit B was digested with trypsin and chymotrypsin. The HPLC profiles of the proteolytic digests showed mainly two radioactive peaks. The 14C-labeled peptides were purified, and their N-terminal sequences were determined to be Cys-Gly-Thr-Pro-Gly-Ala-Gly-Tyr (TC-1) and Ala-Gly-Ile-Ala-Cys-Xaa-Asp-Xaa-Val-Ala(-)- (TC-2). Peptide TC-2 contains a covalent FAD-binding sequence [Asx-His-Val-Ala; Shiga et al. (1983) Biochem. Int., 6, 737]. [14C]IAM-incorporation into the TC-1 sequence was strongly inhibited by sodium acetate. The N-terminal amino acid sequence of the CNBr fragment containing the TC-1 sequence (65 residues) was determined. According to the secondary structure predictions, Gly-Thr-Pro-Gly-Ala-Gly of the TC-1 sequence is located between the beta sheet and alpha helix of the sequence, indicating the presence of an AMP-binding site in the TC-1 region. The activity of the enzyme treated with IAM in the presence and absence of sodium acetate was not inhibited by sodium sulfite, which is known to react specifically with covalent FAD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Two molecular forms of glutamine synthetase localized in the cytoplasm and in chloroplasts, respectively, were detected in pumpkin leaves. Ammonium infiltrated into intact pumpkin leaves activated the synthesis of both enzyme forms. Glutamine synthetase from chloroplasts and the cytoplasmic enzyme were purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-cellulose DE-32, selective adsorption on potassium phosphate gel and preparative electrophoresis in polyacrylamide gel. The molecular weights of both forms of glutamine synthetase as determined by gel-filtration through Sephacryl S-200 are equal to 370,000 and 480,000, respectively. During SDS polyacrylamide gel electrophoresis the enzymes from both sources produced polypeptide chains with respective molecular weights of 50,000 and 58,000. The amino acid composition of the enzymes differed considerably. The content of alpha-helix moities in the chloroplast and cytoplasmic enzyme made up to 17% and 34%, respectively. In the presence of Mg+ the pH optima for the enzymes were equal to 7.75 and 7.25, respectively, and the Km values for L-glutamate were 46 and 13 mM, respectively. It may be concluded that the enzyme forms under study are isoenzymes.  相似文献   

8.
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grownAspergillus niger was increased 3–5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH 4 + , and further, the enzyme is repressed by increasing concentrations of NH 4 + . In contrast to other micro-organisms, theAspergillus niger enzyme was neither specifically inactivated by NH 4 + or L-glutamine nor regulated by covalent modification. Glutamine synthetase fromAspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity. Aspergillusniger glutamine synthetase was completely inactivated by two mol of phenyl-glyoxal and one mol of N-ethylmaleimide with second order rate constants of 3.8 M-1 min-1 and 760 M-1 min-1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH 4 + , Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.  相似文献   

9.
10.
The kinetic properties of glutamine synthetase (EC 6.3.1.2) isolated from pea chloroplasts and purified according to the previously developed procedure have been investigated. The pH optimum for the enzymatic reaction in the presence of Mg2+ and Mn2+ are 7.5-7.6 and 5.5, respectively. The corresponding values of the activation energy per enzyme monomer (Mr = 60 000) are equal to 2900 and 1190 cal/mole. With Mg2+ the values of Km(app.) for NH4+, NH2OH, L-glutamate (+NH4+), L-glutamate (+NH2OH), ATP(+NH4+ and NH2OH) and Mg-ATP (+NH4+ and NH2OH) are 0.64, 17.5, 5.6, 7.0, 1.3 and 0.74 mM, respectively.  相似文献   

11.
The nucleotide ligation site of adenylylated glutamine synthetase, which contains a unique tyrosyl residue linked through a phosphodiester bond to 5'-AMP, was studied by digestion with three hydrolytic enzymes. The products on micrococcal nuclease digestion were adenosine and o-phosphotyrosyl glutamine synthetase. The Km for this macromolecular substrate with the nuclease was 40 microM, at pH 8.9. The glutamine synthetase activity was not affected by deadenosylation with the nuclease, in contrast to SVPDE digestion, with which the glutamine synthetase activity was markedly increased. The Km for the native adenylylated glutamine synthetase with the SVPDE was 36 microM, i.e., similar to that for the nuclease. When the isolated o-phosphotyrosyl enzyme was incubated with alkaline phosphatase at pH 7.2, the glutamine synthetase activity rapidly increased to the same level as that of the SVPDE treated enzyme. Furthermore, kinetic properties of the o-phosphotyrosyl glutamine synthetase were compared with those of the adenylylated enzyme. The optimum pH, apparent Km for each of three substrates, glutamate, ATP, and NH3, and Vmax were in good agreement, as to either Mg2+- or Mn2+-dependent biosynthetic activity. From these results we can conclude that the regulation of glutamine synthetase activity simply requires the phosphorylation of the tyrosyl residue in each subunit, without recourse to adenylylation.  相似文献   

12.
13.
The interaction of Escherichia coli glutamine synthetase with the adenosine 5'-triphosphate analogue, 5'-p-fluorosulfonylbenzoyladenosine (5'-FSO2BzAdo), has been studied. This interaction results in the covalent attachment of the 5'-FSO2BzAdo to the enzyme with concomitant loss of catalytic activity. Although adenine nucleotides interact with glutamine synthetase at three distinct sites--a noncovalent AMP effector site, a regulatory site of covalent adenylylation, and the catalytic ATP/ADP binding site--our studies suggest that reaction with 5'-FSO2BzAdo occurs only at the active center. When glutamine synthetase was incubated with 5'-FSO2BzAdo, the decrease in catalytic activity obeyed pseudo-first order kinetics. The plot of the observed rate constant of inactivation versus the concentration of 5'-FSO2BzAdo was hyperbolic, consistent with reversible binding of the analogue to the enzyme prior to covalent attachment. Protection against inactivation was afforded by ATP and ADP; L-glutamate did not protect the enzyme against inactivation, but rather enhanced the rate of inactivation, consistent with the observations of others (Timmons, R. B., Rhee, S. G., Luterman, D. L., and Chock, P. B. (1974) Biochemistry 13, 4479-4485) that there is synergism in the binding of the two substrates to the enzyme. The incorporation of approximately 1.09 mol of the 5'-FSO2BzAdo/mol of glutamine synthetase subunit resulted in the total loss of enzymatic activity. The results suggest that 5'-FSO2BzAdo occupies the ATP binding site at the active center of glutamine synthetase and binds covalently to an amino acid residue nearby.  相似文献   

14.
Acetyl-CoA synthetase (ACS) catalyses the activation of acetate to acetyl-CoA in the presence of ATP and CoA. The gene encoding Bradyrhyzobium japonicum ACS has been cloned, sequenced, and expressed in Escherichia coli. The enzyme comprises 648 amino acid residues with a calculated molecular mass of 71,996 Da. The recombinant enzyme was also purified from the transformed E. coli. The enzyme was essentially indistinguishable from the ACS of B. japonicum bacteroids as to the criteria of polyacrylamide gel electrophoresis and biochemical properties. Based on the results of database analysis, Gly-263, Gly-266, Lys-269, and Glu-414 were selected for site-directed mutagenesis in order to identify amino acid residues essential for substrate binding and/or catalysis. Four different mutant enzymes (G263I, G266I, K269G, and E414Q) were prepared and then subjected to steady-state kinetic studies. The kinetic data obtained for the mutants suggest that Gly-266 and Lys-269 participate in the formation of acetyl-AMP, whereas Glu-414 may play a role in acetate binding.  相似文献   

15.
The presence of two cysteine residues per each six monomers comprising the oligomer of Chlorella glutamine synthetase (E.C.6.3.1.2) is demonstrated using homogenous enzyme preparation. p-Chloromercuribenzoate (p-CMB) is found to inhibit glutamine synthetase activity, the degree of inhibition depending on the inhibitor concentration. The following enzyme reactivation by dithiotreitol (10(-2) M) was observed only when the enzyme was inactivated with 10(-5) M p-CMB under 15 min. preincubation. Preincubation of the enzyme with 10(-4) M p-CMB for 45 min. did not result in its reactivation. Gel filtration of glutamine synthetase treated with 10(-4) M p-CMB has revealed the dissociation of the enzyme into inactive monomers. Incubation of glutamine synthetase with p-CMB at various pH values, incubation after pre-treatment with urea and experiments with HgCl2 indicate the presence of free and masked inside the globula SH-groups in the enzyme molecule. Competitive character of the enzyme inhibition with p-CMB with respect to ATP indicates that SH-groups of the active site participate in the ATP binding, probably, as Mg-ATP or Mn-ATP complexes. Data on the estimation of ionization constant of glutamate-binding group and experiments on the effect of histidine photooxidation on the enzyme activity indicate the presence of histidine residue in the enzyme active site, which participates in glutamate binding.  相似文献   

16.
The amino acid and carbohydrate content of chloroplastic glutamine synthetase from tobacco leaves has been analysed. The enzyme subunit contanins 5% carbohydrate, mainly represented by glucosamine, galactosamine, glucose, galactose and mannose residues. The enzyme subunit displayed a single band of molecular mass 44000 Da after sodium dodecyl sulphate (SDS) electrophoresis. However, when isoelectrofocussing electrophoresis was performed, four subunits were evident differing by their charge. Furthermore, the four different subunits stained positively when tested with periodic acid Shiff reagent, showing that sugars and amino sugars were present within all the subunits.  相似文献   

17.
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.  相似文献   

18.
Glutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased k(cat) by 200-fold; however, both mutants bound ATP with K(d) values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in k(cat). In addition, the R132K, R454A, and R454K mutations elevated the K(m) value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.  相似文献   

19.
A homogeneous preparation of glyoxylate synthetase from greening potato tubers was used to study the functional role of disulphide groups, lysine and tryptophan residues in enzyme catalysis. The formation of a thioisoindole derivative was demonstrated by spectral analysis of the reduced and o-phthalaldehyde-treated enzymes. o-Phthalaldehyde modification resulted in about a 25 % loss of tryptophan emission at 336 nm and the appearance of a 410-nm emission peak characteristic of a thioisoindole. Ferrous iron was capable of generating thiol groups and addition of substrate resulted in a faster disappearance of these thiols. The optimal time for maximum glyoxylate synthesis by glyoxylate synthetase paralleled the disappearance of these thiols. Involvement of lysine and tryptophan residues in the enzyme reaction was demonstrated by the inhibition of activity by pyridoxal 5′-phosphate and dimethyl(2-hydroxy 5-nitrobenzyl) sulphonium bromide (DMHNB), respectively. Pyridoxal phosphate strongly and reversibly inhibited glyoxylate synthetase, and substrate and metal ion provided significant protection against inhibition. The results suggest that the lysine residue may be at or near the active binding site. The lysyl residue formed a Schiff base with pyridoxal phosphate which was stabilised by NaBH4. Glyoxylate synthetase was also irreversibly inactivated by a tryptophan selective reagent, DMHNB, while substrate provided substantial protection against inactivation. Kinetic analysis and correlation of the spectral data at 410 nm indicated that complete inactivation by DMHNB resulted from the modification of 5 tryptophan residues/subunit, of which one was essential for activity. The available evidence suggests a possible concerted action of enzyme disulphides, ferrous iron, lysine and aromatic amino acid residues in the synthesis of glyoxylate by this enzyme.  相似文献   

20.
Studies to determine the role of histidine in catalysis by L-argininosuccinate synthetase (EC 6. 3. 4. 5) were carried out with the enzyme isolated from soybean cell suspension cultures. These experiments utilized analogues of the substrates citrulline and aspartate to investigate substrate binding, and to determine which portion of the molecule were required for binding at the active site of the enzyme. Photooxidation studies using rose bengal were carried out to define the importance of histidine residues for catalysis. These studies suggest that an active site histidine residue has an important role to play in the formation of argininosuccinate by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号