首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that regulate nitric oxide (NO)-induced apoptosis, especially in T cell apoptosis, are largely uncharacterized. Here, we report that protection from NO-induced cell death by phorbol 12-myristate 13-acetate (PMA) is dependent on both p38 and extracellular signal-regulated kinase (ERK) activation. Exposure of Molt4 cells to NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced both apoptotic and necrotic modes of cell death along with a sustained increase in p38 kinase phosphorylation. However, the p38 inhibitor SB202190 only slightly protected Molt4 cells from NO toxicity. In contrast, PMA rapidly phosphorylated both p38 kinase and ERK, and the phosphorylation statuses were not altered in the presence of SNAP. Interestingly, although each mitogen-activated protein kinase (MAPK) inhibitor by itself had only a modest effect, the combination of inhibitors for both MAPKs almost completely abolished the protective effect of PMA. Furthermore, dominant negative or catalytically inactive variants that modulate p38 and ERK mimicked the effects of MAPK inhibitors. We located the action of p38 and ERK upstream of the p53/mitochondrial membrane potential loss and caspases cascade. Together, these findings suggest that the PMA-induced activations of ERK and p38 kinase are parallel events that are both required for inhibition of NO-induced death of Molt4 cells.  相似文献   

2.
A selective p38 MAP kinase (p38 MAPK) inhibitor, SB202190, induced apoptotic cell death of a macrophage-like cell line, J774.1, in the presence of lipopolysaccharide (LPS), as judged by DNA nicks revealed by terminal deoxy transferase (TdT)-mediated dUTP nick end labeling (TUNEL), activation of caspase-3, and subsequent release of lactate dehydrogenase. This cytotoxicity was dependent on both LPS and SB202190, and such inhibitors of the upstream LPS-signaling cascade as polymyxin B and TPCK blocked this macrophage cell death. SB202190 suppressed the kinase activity of p38, leading to inhibition of activation of MAPKAPK2 and then the subsequent phosphorylation of hsp27 in LPS-treated macrophages both in vitro and in vivo, but an inactive analog of SB202190, SB202474, did not. There was a threshold of the time of addition of SB202190 to LPS-treated macrophages to induce apoptosis, which was before full transmission of p38 activity to a direct downstream kinase, MAPKAPK2. Besides, localization of phosphorylated hsp27 in Golgi area of the LPS-treated macrophages was suppressed by SB202190, while it was not by SB202474. These results suggest that selective inhibition of p38 MAPK activity in LPS-induced MAP kinase cascade leads to apoptosis of macrophages.  相似文献   

3.
p38 mitogen-activated protein kinase (MAPK) belongs to the MAPK superfamily, phosphorylating serine and/or threonine residues of the target proteins. The activation of p38 MAPK leads to cell growth, differentiation, inflammation, survival or apoptosis. In this study, we tested the effect of two highly specific and potent inhibitors of p38 MAPK (namely, SB203580 and SB202190) on human breast cancer cell line MDA-MB-231 to elucidate the controversial role of p38 MAPK on cell proliferation and/or cell migration/metastasis further. It was determined that the IC50 value of SB203580 was 85.1 µM, while that of SB202190 was 46.6 µM, suggesting that SB202190 is slightly more effective than SB203580. To verify the effect of each inhibitor on cell proliferation and cytotoxicity, the cells were treated with various doses of SB203580 and SB202190 and examined using iCELLigence system. No significant effect of 1 and 5 µM of both inhibitors were seen on cell proliferation as compared to the DMSO-treated control cells for up to 96 h. On the other hand, both SB203580 and SB202190 significantly prevented cell proliferation at a concentration of 50 µM. SB202190 was again more effective than SB203580. Afterwards, we tested the effect of each inhibitor on cell migration using wound assay. Both SB203580 and SB202190 significantly reduced cell migration in a time-dependent manner at a concentration of 50 µM. However, interestingly it was observed that a low and noncytotoxic dose of 5 µM of SB203580 and SB202190 also did cause significant cell migration inhibition at 48 h of the treatment, corroborating the fact that p38 MAPK pathway has a critical role in cell migration/metastasis. Then, we tested whether each p38 MAPK inhibitor has any effect on cell adhesion during a treatment period of 3 h using iCELLigence system. A concentration of only 50 µM of SB202190 reduced cell adhesion for about 1.5 h (p < 0.001); after that period of time, cell adhesion in 50 µM SB202190-treated cells returned to the level of the control cells. To determine the mechanism of growth and cell migration inhibitory effects of p38 MAPK inhibitors, the activation/inactivation of various proteins and enzymes was subsequently analyzed by PathScan® Intracellular Signaling Array kit. The ERK1/2 phosphorylation level was not modified by low concentrations (1 or 5 µM) of SB202190 and SB203580; while a high concentration (50 µM) of both inhibitors caused significant reductions in the ERK1/2 phosphorylation. In addition, it was determined that both p38 MAPK inhibitors caused significant increases on the Ser15 phosphorylation of mutant p53 in MDA-MB-231 under these experimental conditions; while SB202190 was more potent than SB203580.  相似文献   

4.
We examined whether the mitogen-activated protein kinase (MAPK) pathway is involved in Shiga toxin (Stx)-induced Vero cell injury. Consonant with cell injury, Stx caused a transient extracellular signal-regulated kinase1/2 (ERK1/2) and a sustained p38 MAPK phosphorylation. p38 MAPK inhibitors (SB 203580 and PD 169316), but not an ERK1/2 kinase inhibitor (PD 98059), partially inhibited the Stx-induced cell death. BAPTA-AM, a Ca(2+) chelator, reduced both cell injury and p38 MAPK phosphorylation. Antioxidants reduced Stx1-induced p38 MAPK phosphorylation. These data indicate that Stx activates p38 MAPK through an increase in intracellular Ca(2+) and reactive oxygen species, and this signaling is involved in Stx-induced cell death.  相似文献   

5.
SB202190, a widely used inhibitor of p38 MAPKα and β, was recently described to induce autophagic vacuoles and cell death in colon and ovarian cancer cells lines and, therefore, this effect was supposed to be specific for transformed cells and to open therapeutic options. Here, we demonstrate that SB202190 and the structurally related inhibitor SB203580 induce pro-autophagic gene expression and vacuole formation in various cancer and non-cancer cell lines of human, rat, mouse and hamster origin. This effect seems to induce defective autophagy leading to the accumulation of acidic vacuoles, p62 protein and lipid conjugated LC3. Using further p38 inhibitors we show that p38 MAPK inhibition is not sufficient for the autophagic response. In line with these results, expression of a SB202190-resistant mutant of p38α, which significantly increases activity of the p38 pathway under inhibitory conditions, does not block SB202190-dependent vacuole formation, indicating that lack of p38α activity is not necessary for this effect. Obviously, the induction of autophagic vacuole formation by SB203580 and SB202190 is due to off-target effects of these inhibitors on post-translational protein modifications, such as phosphorylation of the MAPKs ERK1/2 and JNK1/2, ribosomal protein S6, and PKB/Akt. Interestingly, the PI3K-inhibitor wortmannin induces transient vacuole formation indicating that the PI3K-PKB/Akt-mTOR pathway is essential for preventing autophagy and that cross-inhibition of this pathway by SB202190 could be the reason for the early part of the effect observed.  相似文献   

6.
Activation of the mitotic checkpoint by chemotherapeutic drugs such as taxol causes mammalian cells to arrest in mitosis and then undergo apoptosis. However, the biochemical basis of chemotherapeutic drug-induced cell death is unclear. Herein, we provide new evidence that both cell survival and cell death-signaling pathways are concomitantly activated during mitotic arrest by microtubule-interfering drugs. Treatment of HeLa cells with chemotherapeutic drugs activated both p38 mitogen-activated protein kinase (MAPK) and p21-activated kinase (PAK). p38 MAPK was necessary for chemotherapeutic drug-induced cell death because the p38 MAPK inhibitors SB203580 or SB202190 suppressed cell death. Dominant-active MKK6, a direct activator of p38 MAPK, also induced cell death by stimulating translocation of Bax from the cytosol to the mitochondria in a p38 MAPK-dependent manner. Dominant active PAK suppressed this MKK6-induced cell death. PAK seems to mediate cell survival by phosphorylating Bad, and inhibition of PAK in mitotically arrested cells reduced Bad phosphorylation and increased apoptosis. Our results suggest that therapeutic strategies that suppress PAK-mediated survival signals may improve the efficacy of current cancer chemotherapies by enhancing p38 MAPK-mediated cell death.  相似文献   

7.
We previously showed that basic fibroblast growth factor (bFGF)-induced activation of protein kinase C (PKC) via phosphatidylinositol-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D suppresses interleukin-6 (IL-6) synthesis by bFGF itself in osteoblast-like MC3T3-E1 cells. In the present study, we further investigated the mechanism underlying the bFGF-induced IL-6 synthesis in MC3T3-E1 cells. bFGF time-dependently induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580, a specific inhibitor of p38 MAP kinase, suppressed the bFGF-induced IL-6 synthesis dose-dependently. The phosphorylation of p38 MAP kinase by bFGF was suppressed by TMB-8, an inhibitor of intracellular Ca(2+) mobilization, or the depletion of extracellular Ca(2+) with EGTA. A23187, a Ca-ionophore, stimulated the phosphorylation of p38 MAP kinase. SB203580 inhibited the A23187-induced synthesis of IL-6. 1-Oleoyl-2-acetyl-sn-glycerol, a synthetic diacylglycerol activating PKC, reduced the bFGF-induced IL-6 synthesis. 12-O-Tetradecanoylphorbol-13-acetate, an activator of PKC, attenuated the phosphorylation of p38 MAP kinase by bFGF, but did not affect the A23187-induced phosphorylation. These results strongly suggest that bFGF-induced IL-6 synthesis is mediated via p38 MAP kinase activation in osteoblasts, and that PKC acts at a point upstream from p38 MAP kinase.  相似文献   

8.
9.
Differentiation therapy for neoplastic diseases has potential for supplementing existing treatment modalities but its implementation has been slow. One of the reasons is the lack of full understanding of the complexities of cellular pathways through which signals for differentiation lead to cell maturation. This was addressed in this study using HL60 cells, a well-established model of differentiation of neoplastic cells. SB 203580 and SB 202190, specific inhibitors of a signaling protein p38 MAP kinase, were found to markedly accelerate monocytic differentiation of HL60 cells induced by low concentrations of 1,25-dihydroxyvitamin D(3) (1,25D(3)). Surprisingly, inhibition of p38 activity resulted in sustained enhancement of p38 phosphorylation and of its in vitro activity in the absence of the inhibitor, indicating up-regulation of the upstream components of the p38 pathway. In addition, SB 203580 or SB 202190 treatment of HL60 cells resulted in a prolonged activation of the JNK and, to a lesser extent, the ERK pathways. The data are consistent with the hypothesis that in HL60 cells an interruption of a negative feedback loop from a p38 target activates a common regulator of multiple MAPK pathways. The possibility also exists that JNK and/or ERK pathways amplify a differentiation signal provided by 1,25D(3).  相似文献   

10.
Nanomolar concentrations of human amylin promote death of RINm5F cells in a time- and concentrationdependent manner. Morphological changes of chromatin integrity suggest that cells are predominantly undergoing apoptosis. Human amylin induces significant activation of caspase-3 and strong and sustained phosphorylation of stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38, that precedes cell death. Extracellular signal-regulated kinase (ERK) activation was not concomitant with JNK and/or p38 activation. Activation of caspase-3 and mitogen-activated protein kinases (MAPKs) was detected by Western blot analysis. Addition of the MEK1 inhibitor PD 98059 had no effect on amylin-induced apoptosis, suggesting that ERK activation does not play a role in this apoptotic scenario. A correlative inhibition of JNK activation by the immunosuppressive drug FK506, as well as a selective inhibition of p38 MAPK activation by SB 203580, significantly suppressed procaspase-3 processing and the extent of amylin-induced cell death. Moreover, simultaneous pretreatment with both FK506 and SB 203580, or with the caspase-3 inhibitor Ac-DEVD-CHO alone, almost completely abolished procaspase-3 processing and cell death. Thus, our results suggest that amylin-induced apoptosis proceeds through sustained activation of JNK and p38 MAPK followed by caspase-3 activation.  相似文献   

11.
Sphingosine-1-phosphate (S-1-P) has been identified as an extracellular mediator and an intracellular second messenger that may modulate cell motility, adhesion, proliferation, and differentiation and cancer cell invasion. Widely distributed, S-1-P is most abundant in the intestine. Although S-1-P is likely to modulate various intracellular pathways, activation of the mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase 1 (ERK1), ERK2, and p38 is among the best-characterized S-1-P effects. Because the MAPKs regulate proliferation, we hypothesized that S-1-P might stimulate intestinal epithelial cell proliferation by MAPK activation. Human Caco-2 intestinal epithelial cells were cultured on a fibronectin matrix because fibronectin is an important constituent of the gut mucosal basement membrane. We assessed ERK1, ERK2, and p38 activation by Western blotting with antibodies specific for their active forms and proliferation by Coulter counting at 24 h. Specific MAP kinase kinase (MEK) and p38 inhibitors PD98059 (20 microM) and SB202190 and SB203580 (10 and 20 microM) were used to probe the role of ERK and p38 in S-1-P-mediated proliferation. Three or more similar studies were pooled for the analysis. S-1-P stimulated Caco-2 proliferation and dose-responsively activated ERK1, ERK2, and p38. Proliferation peaked at 5 microM, yielding a cell number 166.3 +/- 2.7% of the vehicle control (n = 6, P < 0.05). S-1-P also maximally stimulated ERK1, ERK2, and p38 at 5 microM, to 164.4 +/- 19.9%, 232.2 +/- 38.5%, and 169.2 +/- 20.5% of the control, respectively. Although MEK inhibition prevented S-1-P activation of ERK1 and ERK2 and slightly but significantly inhibited basal Caco-2 proliferation, MEK inhibition did not block the S-1-P mitogenic effect. However, pretreatment with 10 microM SB202190 or SB203580 (putative p38 inhibitors) attenuated the stimulation of proliferation by S-1-P. Twenty micromolars of SB202190 or SB203580 completely blocked the mitogenic effect of S-1-P. Ten to twenty micromolars of SB202190 and SB203580 also dose-dependently ablated the effects of 5 microM S-1-P on heat shock protein 27 accumulation, a downstream consequence of p38 MAPK activation. Consistent with the reports in some other cell types, S-1-P appears to activate ERK1, ERK2, and p38 and to stimulate proliferation. However, in contrast to the mediation of the S-1-P effects in some other cell types, S-1-P appears to stimulate human intestinal epithelial proliferation by activating p38. ERK activation by S-1-P is not required for its mitogenic effect.  相似文献   

12.
13.
Recent studies demonstrate that cytotoxic actions of ouabain and other cardiotonic steroids (CTS) on renal epithelial cells (REC) are triggered by their interaction with the Na+,K+-ATPase α-subunit but not the result of inhibition of Na+,K+-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. This study examined the role of mitogen-activated protein kinases (MAPK) in the death of ouabain-treated REC. Exposure of C7-MDCK cells that resembled principal cells from canine kidney to 3 μM ouabain led to phosphorylation of p38 without significant impact on phosphorylation of ERK and JNK MAPK. Maximal increment of p38 phosphorylation was observed at 4 h followed by cell death at 12 h of ouabain addition. In contrast to ouabain, neither cell death nor p38 MAPK phosphorylation were affected by elevation of the [Na+]i/[K+]i ratio triggered by Na+,K+-ATPase inhibition in K+-free medium. p38 phosphorylation was noted in all other cell types exhibiting death in the presence of ouabain, such as intercalated cells from canine kidney and human colon rectal carcinoma cells. We did not observe any action of ouabain on p38 phosphorylation in ouabain-resistant smooth muscle cells from rat aorta and endothelial cells from human umbilical vein. Both p38 phosphorylation and death of ouabain-treated C7-MDCK cells were suppressed by p38 inhibitor SB 202190 but were resistant to its inactive analogue SB 202474. Our results demonstrate that death of CTS-treated REC is triggered by Nai+,Ki+—independent activation of p38 MAPK.  相似文献   

14.
We investigated the mechanism of toxicity of peroxovanadium complex bpV (phen) in RINm5F cells. Treatment with bpV (phen) provoked cell death, predominantly by apoptosis. This compound induced strong and sustained JNK and p38 MAPK activation. However, ERK phosphorylation was not affected. The level of expression of MAPK phosphatase MKP-1 was suppressed after bpV (phen) treatment. In addition, this compound did not stimulate proteolytic processing of procaspase-3, suggesting that caspase-3 is not activated during the course of bpV (phen)-induced apoptosis. A correlative inhibition of JNK activation by immunosuppressive drug FK 506 induced ERK activation and MKP-1 expression, and suppressed RINm5F cell death. A specific p38 inhibitor SB 203580 also stimulated ERK activation and cell survival. Furthermore, simultaneous pretreatment with both FK 506 and SB 203580 almost completely abolished cell death. Thus, our results suggest that stress kinases and MKP-1 have a role in bpV (phen)-induced apoptosis of RINm5F cells.  相似文献   

15.
16.
Bacterial heat shock proteins (hsps) can have various effects on human cells. We investigated whether bacterial hsp60s can protect epithelial cells from cell death by affecting the mitogen-activated protein kinase (MAPK) signal pathways. Cell protection was studied by adding bacterial hsp60s to skin keratinocyte cultures (HaCaT cell line) before UV radiation. The results show that hsp60 significantly protected against UV radiation-induced cell death. Effects of UV radiation and exogenous hsp60 on phosphorylation of MAPKs and on activation of caspase 3 were examined by Western blot analysis. UV radiation strongly induced phosphorylation of p38 MAPK and formation of active caspase 3. A p38 inhibitor, SB 203580, totally blocked UV radiation-mediated activation of caspase 3. Preincubation with hsp60 strongly induced phosphorylation of ERK1/2 and inhibited UV radiation-mediated activation of caspase 3. PD 98059, a specific inhibitor of the ERK1/2 pathway, blocked this inhibitory effect of exogenous hsp60. Studies on the association between activity of MAPKs or caspase 3 and cell death showed that the ERK1/2 pathway inhibitor reversed protective effect of hsp60 while specific inhibition of p38 and caspase 3 reduced cell death. These results indicate that in HaCaT cells UV radiation mediates cell death through activation of p38 followed by caspase 3 activation. Exogenous hsp60 partially protects against UV radiation-mediated epithelial cell death through activation of ERK1/2, which inhibits caspase 3 activation.  相似文献   

17.
18.
Neuroplastin-65 is a brain-specific, synapse-enriched member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. Previous studies highlighted the importance of neuroplastin-65 for long-term potentiation (LTP), but the mechanism was unclear. Here, we show how neuroplastin-65 activation of mitogen-activated protein kinase p38 (p38MAPK) modified synapse strength by altering surface glutamate receptor expression. Organotypic hippocampal slice cultures treated with the complete extracellular fragment of neuroplastin-65 (FcIg1-3) sustained an increase in the phosphorylation of p38MAPK and an inability to induce LTP at hippocampal synapses. The LTP block was reversed by application of the p38MAPK inhibitor SB202190, suggesting that p38MAPK activation occurred downstream of neuroplastin-65 binding and upstream of the loss of LTP. Further investigation revealed that the mechanism underlying neuroplastin-65-dependent prevention of LTP was a p38MAPK-dependent acceleration of the loss of surface-exposed glutamate receptor subunits that was reversed by pretreatment with the p38MAPK inhibitor SB202190. Our results indicate that neuroplastin-65 binding and associated stimulation of p38MAPK activity are upstream of a mechanism to control surface glutamate receptor expression and thereby influence plasticity at excitatory hippocampal synapses.  相似文献   

19.
We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号