首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
New insights into the mechanisms of vitamin D action   总被引:17,自引:0,他引:17  
  相似文献   

4.
Recently, it has been reported that 25-hydroxyvitamin D3-1alpha-hydroxylase [1alpha(OH)ase, CYP27B1], required to convert non-toxic 25-hyxdroxyvitamin D3 [25(OH)D(3)] to its active metabolite [1alpha,25(OH)(2)D(3)], is present in the epithelial cells of the human colon. In the present study, the potential chemoprotective role of 25(OH)D(3) was evaluated for colon cancer using the HT-29, human colon cancer cell line. Colon cancer cells were treated with 25(OH)D(3) (500nM or 1muM), 1alpha,25(OH)(2)D(3) (500nM), cholecalciferol (D3, 1muM) or vehicle and cell number determined at days 2 and 5 post-treatment. Results showed that both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) induced dose- and time-dependent anti-proliferative effects on the HT-29 cells, with maximum inhibition noted at day 5. Western blot analyses revealed an up-regulation of VDR and 1alpha(OH)ase expression following 24h of treatment with 25(OH)D(3), and 1alpha,25(OH)(2)D(3). These results are consistent with the expression of VDR and 1alpha(OH)ase in samples of normal colonic tissue, aberrant crypt foci (ACFs) and colon adenocarcinomas. The VDR expression was sequentially increased from normal to pre-cancerous lesions to well-differentiated tumors and then decreased in poorly differentiated tumors. Expression of 1alpha(OH)ase was equally expressed in normal, pre-cancerous lesions and malignant human colon tissues. The increased expression of 1alpha(OH)ase in colon cancer cells treated with the pro-hormone and its anti-proliferative effects, suggest that 25(OH)D(3) may offer possible therapeutic and chemopreventive option in colon cancer.  相似文献   

5.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

6.
7.
8.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

9.
(23S)-25-Dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) functions an antagonist of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells [J. Biol. Chem. 274 (1999) 16392]. We examined the effect of vitamin D antagonist, TEI-9647, on osteoclast formation induced by 1alpha,25-(OH)(2)D(3) from bone marrow cells of patients with Paget's disease. TEI-9647 itself never induced osteoclast formation even at 10(-6)M, but dose-dependently (10(-10) to 10(-6)M) inhibited osteoclast formation induced by physiologic concentrations of 1alpha,25-(OH)(2)D(3) (41 pg/ml, 10(-10)M) from bone marrow cells of patients with Paget's disease. At the same time, 10(-8)M of TEI-9647 alone did not cause 1alpha,25-(OH)(2)D(3) dependent gene expression, but almost completely suppressed TAF(II)-17, a potential coactivator of VDR and 25-hydroxyvitamin D(3)-24-hydroxylase (25-OH-D(3)-24-hydroxylase) gene expression induced by 10(-10)M 1alpha,25-(OH)(2)D(3) in bone marrow cells of patients with Paget's disease. Moreover, TEI-9647 dose-dependently inhibited bone resorption induced by 10(-9)M 1alpha,25-(OH)(2)D(3) by osteoclasts produced by RANKL and M-CSF treatment of measles virus nucleocapsid gene transduced bone marrow cells. These results suggest that TEI-9647 acts directly on osteoclast precursors and osteoclasts, and that TEI-9647 may be a novel agent to suppress the excessive bone resorption and osteoclast formation in patients with Paget's disease.  相似文献   

10.
We employed a genetic approach to determine whether deficiency of 1,25-dihydroxyvitamin D (1,25(OH)2D) and deficiency of the vitamin D receptor (VDR) produce the same alterations in skeletal and calcium homeostasis and whether calcium can subserve the skeletal functions of 1,25(OH)2D and the VDR. Mice with targeted deletion of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha(OH)ase-/-) gene, the VDR gene, and both genes were exposed to 1) a high calcium intake, which maintained fertility but left mice hypocalcemic; 2) this intake plus three times weekly injections of 1,25(OH)2D3, which normalized calcium in the 1alpha(OH)ase-/- mice only; or 3) a "rescue" diet, which normalized calcium in all mutants. These regimens induced different phenotypic changes, thereby disclosing selective modulation by calcium and the vitamin D system. Parathyroid gland size and the development of the cartilaginous growth plate were each regulated by calcium and by 1,25(OH)2D3 but independent of the VDR. Parathyroid hormone secretion and mineralization of bone reflected ambient calcium levels rather than the 1,25(OH)2D/VDR system. In contrast, increased calcium absorption and optimal osteoblastogenesis and osteoclastogenesis were modulated by the 1,25(OH)2D/VDR system. These studies indicate that the calcium ion and the 1,25(OH)2D/VDR system exert discrete effects on skeletal and calcium homeostasis, which may occur coordinately or independently.  相似文献   

11.
12.
13.
More than 2,000 synthetic analogues of the biological active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), are presently known. Basically, all of them interfere with the molecular switch of nuclear 1alpha,25(OH)(2)D(3) signaling, which is the complex of the vitamin D receptor (VDR), the retinoid X receptor (RXR), and a 1alpha,25(OH)(2)D(3) response element (VDRE). Central element of this molecular switch is the ligand-binding domain (LBD) of the VDR, which can be stabilized by a 1alpha,25(OH)(2)D(3) analogue either in its agonistic, antagonistic, or non-agonistic conformation. The positioning of helix 12 of the LBD is of most critical importance for these conformations. In each of the three conformations, the VDR performs different protein-protein interactions, which then result in a characteristic functional profile. Most 1alpha,25(OH)(2)D(3) analogues have been identified as agonists, a few are antagonists (e.g., ZK159222 and TEI-9647), and only Gemini and some of its derivatives act under restricted conditions as non-agonists. The functional profile of some 1alpha,25(OH)(2)D(3) analogues, such as EB1089 and Gemini, can be modulated by protein and DNA interaction partners of the VDR. This provides them with some selectivity for DNA-dependent and -independent signaling pathways and VDRE structures.  相似文献   

14.
Normal prostate epithelial cells are acutely sensitive to the antiproliferative action of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), whilst prostate cancer cell lines and primary cultures display a range of sensitivities. We hypothesised that key antiproliferative target genes of the Vitamin D receptor (VDR) were repressed by an epigenetic mechanism in 1alpha,25(OH)(2)D(3)-insensitive cells. Supportively, we found elevated nuclear receptor co-repressor and reduced VDR expression correlated with reduced sensitivity to the antiproliferative action of 1alpha,25(OH)(2)D(3). Furthermore, the growth suppressive actions of 1alpha,25(OH)(2)D(3) can be restored by co-treatment with low doses of histone deacetylation inhibitors, such as trichostatin A (TSA) to induce apoptosis. Examination of the regulation of VDR target genes revealed that co-treatment of 1alpha,25(OH)(2)D(3) plus TSA co-operatively upregulated GADD45alpha. Similarly in a primary cancer cell culture, the regulation of appeared GADD45alpha repressed. These data demonstrate that prostate cancer cells utilise a mechanism involving deacetylation to suppress the responsiveness of VDR target genes and thus ablate the antiproliferative action of 1alpha,25(OH)(2)D(3).  相似文献   

15.
Vitamin D analogs such as paricalcitol and calcitriol that activate the vitamin D receptor (VDR) provide survival benefit for Stage 5 chronic kidney disease (CKD) patients, possibly associated with a decrease in cardiovascular (CV)-related incidents. Phenotypic changes of smooth muscle cells play an important role in CV disease. The role of vitamin D analogs in modulating gene expression in smooth muscle cells is still not well understood. In this study, DNA microarray analysis of approximately 22,000 different human genes was used to characterize the VDR-mediated gene expression profile in human coronary artery smooth muscle cells (CASMC) at rest. Cells in serum free medium were treated with 0.1 microM calcitriol (1alpha,25-dihydroxyvitamin D(3)) or paricalcitol (19-nor-1alpha,25-(OH)(2)D(2)) for 30 h. A total of 181 target genes were identified, with 103 genes upregulated and 78 downregulated (>two fold changes in either drug treatment group with P < 0.01). No significant difference was observed between calcitriol and paricalcitol. Target genes fell into various categories with the top five in cellular process, cell communication, signal transduction, development, and morphogenesis. Twenty-two selected genes linked to the CV system were also impacted. Real-time RT-PCR and/or Western blotting analysis were employed to confirm the expression patterns of selected genes such as 25-hydroxyvitamin D-24-hydroxylase, Wilms' tumor gene 1, transforming growth factorbeta3, plasminogen activator inhibitor-1, thrombospondin-1 (THBS1), and thrombomodulin (TM). This study provides insight into understanding the role of VDR in regulating gene expression in resting smooth muscle cells.  相似文献   

16.
Carlberg C  Quack M  Herdick M  Bury Y  Polly P  Toell A 《Steroids》2001,66(3-5):213-221
The vitamin D(3) receptor (VDR) acts primarily as a heterodimer with the retinoid X receptor (RXR) on different types of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) response elements (VDREs). Therefore, DNA-bound VDR-RXR heterodimers can be considered as the molecular switches of 1alpha,25(OH)(2)D(3) signalling. Functional conformations of the VDR within these molecular switches appear to be of central importance for describing the biologic actions of 1alpha,25(OH)(2)D(3) and its analogues. Moreover, VDR conformations provide a molecular basis for understanding the potential selective profile of VDR agonists, which is critical for a therapeutic application. This review discusses VDR conformations and their selective stabilization by 1alpha,25(OH)(2)D(3) and its analogues, such as EB1089 and Gemini, as a monomer in solution or as a heterodimer with RXR bound to different VDREs and complexed with coactivator or corepressor proteins.  相似文献   

17.
18.
The anti-proliferative effects of histone deacetylase (HDAC) inhibitors and 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] converge via the interaction of un-liganded vitamin D receptor (VDR) with co-repressors recruiting multiprotein complexes containing HDACs and via the induction of cyclin-dependent kinase inhibitor (CDKI) genes of the INK4 and Cip/Kip family. We investigated the effects of the HDAC inhibitor Trichostatin A (TSA) and 1alpha,25(OH)2D3 on the proliferation and CDKI gene expression in malignant and non-malignant mammary epithelial cell lines. TSA induced the INK4-family genes p18 and p19, whereas the Cip/Kip family gene p21 was stimulated by 1alpha,25(OH)2D3. Chromatin immunoprecipitation and RNA inhibition assays showed that the co-repressor NCoR1 and some HDAC family members complexed un-liganded VDR and repressed the basal level of CDKI genes, but their role in regulating CDKI gene expression by TSA and 1alpha,25(OH)2D3 were contrary. HDAC3 and HDAC7 attenuated 1alpha,25(OH)2D3-dependent induction of the p21 gene, for which NCoR1 is essential. In contrast, TSA-mediated induction of the p18 gene was dependent on HDAC3 and HDAC4, but was opposed by NCoR1 and un-liganded VDR. This suggests that the attenuation of the response to TSA by NCoR1 or that to 1alpha,25(OH)2D3 by HDACs can be overcome by their combined application achieving maximal induction of anti-proliferative target genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号