首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteopontin (OPN) is a pleiotropic cytokine produced both by immune and non-immune cells and active on different cellular targets. OPN production has been associated with several pathological conditions, including autoimmune diseases (e.g. lupus, multiple sclerosis and rheumatoid arthritis) and cancer. Emerging evidence suggests that the role of OPN has been underestimated, as it seems to be working at multiple levels of immune regulation, such as the shaping of T cell effector responses, the regulation of the tumor microenvironment, and the functional interaction with mesenchymal stromal cells. In this context, dendritic cells (DCs) play a crucial role being both an important source and a cellular target for OPN action. DC family is composed by several cell subsets endowed with specific immune functions. OPN exerts its biological functions through multiple receptors and is produced in different intracellular and secreted forms. OPN production by DC subsets is emerging as a crucial mechanism of regulation in normal and pathological conditions and starts to be exploited as a therapeutic target. This review will focus on the role of DC-derived OPN in shaping immune response and on the complex role of this cytokines in the regulation in immune response.  相似文献   

2.
Osteopontin (OPN) has been reported to enhance the interferon (IFN)-gamma-producing Th1-type T cell response through the induction of interleukin (IL)-12 and the suppression of IL-10. We therefore investigated whether OPN could enhance Th1 induction by vaccination against bacterial antigen in vivo. Unexpectedly, the co-inoculation of OPN suppressed the induction of IFN-gamma-producing CD4(+) T cells and T cell proliferative response after the subcutaneous heat-killed Listeria monocytogenes(HKLM) immunization. These results suggest that OPN down-regulates T cell priming. Since dendritic cells (DC) play a pivotal role in T cell priming, we next analyzed the effects of OPN on DC. The addition of OPN into the culture of either bone marrow-derived immature DC or an immature DC line JAWSII showed no effects on the expression of MHC class II, CD80, and CD86 molecules before and after HKLM stimulation. Consistently, in vitro OPN-treated DC showed a normal antigen-presenting function to an established Listeria-specific Th1-type T cells. However, when the DC were transferred into the footpad with HKLM and OPN, the migration of the transferred DC into the regional LN was suppressed in comparison to the DC transferred with HKLM alone. Furthermore, the addition of OPN into the culture of the DC line and HKLM severely suppressed the HKLM-induced expression of CCR7 chemokine receptor which is an important factor in the migration of DC into LN. All the results suggest the existence of an OPN-mediated negative feedback mechanism in the T cell immune response through the regulation of DC migration.  相似文献   

3.
Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions. OPN is involved in normal physiological processes and is implicated in the pathogenesis of a variety of disease states, including atherosclerosis, glomerulonephritis, cancer, and several chronic inflammatory diseases. Through interactions with several integrins, OPN mediates cell migration, adhesion, and survival in many cell types. OPN also functions as a Th1 cytokine, promotes cell-mediated immune responses, and plays a role in chronic inflammatory and autoimmune diseases. Besides its function in inflammation, OPN is also a regulator of biomineralization and a potent inhibitor of vascular calcification.  相似文献   

4.
Syk is a cytoplasmic kinase that serves multiple functions within the immune system to couple receptors for antigens and antigen-antibody complexes to adaptive and innate immune responses. Recent studies have identified additional roles for the kinase in cancer cells, where its expression can either promote or suppress tumor cell growth, depending on the context. Proteomic analyses of Syk-binding proteins identified several interacting partners also found to be recruited to stress granules. We show here that the treatment of cells with inducers of stress granule formation leads to the recruitment of Syk to these protein-RNA complexes. This recruitment requires the phosphorylation of Syk on tyrosine and results in the phosphorylation of proteins at or near the stress granule. Grb7 is identified as a Syk-binding protein involved in the recruitment of Syk to the stress granule. This recruitment promotes the formation of autophagosomes and the clearance of stress granules from the cell once the stress is relieved, enhancing the ability of cells to survive the stress stimulus.  相似文献   

5.
TGF-beta1: immunosuppressant and viability factor for T lymphocytes   总被引:5,自引:0,他引:5  
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine with multiple roles in the immune system. To date, it has been difficult to develop a comprehensive picture of the effect of TGF-beta on T lymphocytes, because TGF-beta not only acts directly on T lymphocytes, but also acts indirectly by regulating the function of antigen-presenting cells. In early studies, it was mostly the inhibitory function of TGF-beta that was demonstrated; recently, however TGF-beta was recognized as an antiapoptotic survival factor for T lymphocytes. The outcome of the TGF-beta effect on T lymphocytes was shown to strongly depend on their stage of differentiation and on the cytokine milieu. TGF-beta cannot be classified as a classical Th1 or Th2 cytokine. However, recently the existence of the TGF-beta-producing Th3 subset was described which might play an important regulatory role during an immune response. A better understanding of the molecular mechanism of how TGF-beta inhibits or stimulates T lymphocytes will help to predict the complex functions of this cytokine.  相似文献   

6.
Surface molecules that are differentially expressed on Th1 and Th2 cells may be useful in regulating specific immune responses in vivo. Using a panel of mAbs, we have identified murine CD226 as specifically expressed on the surface of differentiated Th1 cells but not Th2 or Th0 cells. Although CD226 is constitutively expressed on CD8 cells, it is up-regulated on CD4 cells upon activation. Th1 differentiation results in enhanced CD226 expression, whereas expression is down-regulated upon Th2 polarization. We demonstrate that CD226 is involved in the regulation of T cell activation; in vivo treatment with anti-CD226 results in significant reduction of Th1 cell expansion and in the induction of APCs that inhibit T cell activation. Furthermore, anti-CD226 treatment delays the onset and reduces the severity of a Th1-mediated autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest that CD226 is a costimulatory molecule that plays an important role in activation and effector functions of Th1 cells.  相似文献   

7.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

8.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

9.
BACKGROUND: Adaptive immune responses are deterministically classified into humoral or cell-mediated depending on the pattern of Th cell polarization into Th1 or Th2. Evidence suggests that the process of Th polarization is stochastic, however, the presence of some deterministic components has not been ruled out. Here, a Markov chain model that accounts for Th-mediated immune responses was developed based on the assumption that Th polarization and consequent transition events are stochastic. RESULTS: Using assumed probability values, model analysis suggests that there is a rapid convergence to produce an immune response once the Th cell is stimulated by an antigen which is amplified as the number of transitions increases. The expected number of visits between Th and itself, B and itself and Tc and itself is about one whereas it is zero, less than one or degrees in the rest of the transition events depending on the interacting states. CONCLUSIONS: Based on model analysis and validation, modeling Th-mediated immune responses as a Markov chain process seems to be plausible. The large degree of flexibility inherent in such a view of adaptive immunity can be helpful in addressing questions pertinent to Th function and behavior.  相似文献   

10.
Osteopontin (OPN) plays roles in a variety of cellular processes from bone resorption and extracellular matrix (ECM) remodeling to immune cell activation and inhibition of apoptosis. Because it binds receptors (integrins, CD44 variants) typically engaged by ECM molecules, OPN acts as a "soluble" ECM molecule. A persistent theme throughout the characterization of how OPN functions has been the importance of phosphorylation. The source of the OPN used in specific experiments and the location of modified sites is an increasingly important consideration for OPN research. We review briefly some of the ways OPN impacts on the biology of mammalian systems with an emphasis on the importance of serine phosphorylation in modulating its signaling ability. We describe experiments that support the hypothesis that differences in the post-translational phosphorylation of OPN expressed by different cell types regulate how it impacts on target cells. Analyses of OPN's potential secondary structure reveal a possible beta-sheet conformation that offers an interpretation of certain experimental observations, specifically the effect of thrombin cleavage; it is consistent with an interaction between the C-terminal region of the protein and the central integrin-binding RGD sequence.  相似文献   

11.
Prostaglandin (PG)I(2) has important regulatory functions on the innate and adaptive immune systems. Recent experimental evidence reveals that PGI(2) modulates the development and function of CD4+ T cells subsets, including Th1, Th2, and Th17 cell responses. In vitro and in vivo studies support that PGI(2) generally has an inhibitory effect on Th1 and Th2 activation, differentiation, and cytokine production. In contrast, PGI(2) seems to enhance Th17-favoring polarization conditions, resulting in Th17 cytokine production. Therefore, PGI(2) may either promote or inhibit individual CD4+ cell subsets and impact adaptive immune responses.  相似文献   

12.
The neutrophil has long been considered a phagocytic cell with a short life-span whose major role is to destroy intruders to the body. Toll receptors and anti-infectious factors such as defensin, perforin and granzymes are newly discovered mechanisms used by neutrophils for the first line of defense against invaders. Moreover, subpopulations of neutrophils share specific functions like the synthesis of certain cytokines and chemokines, as well as the expression of immunoreceptors like the T cell receptor. A primary consequence of inflammation on neutrophils is a delay in their spontaneous programmed cell death. Hence, this multifunctional cell is also a necessary actor of the acquired immune response. Neutrophils have the capacity to degrade and process antigens as well as efficiently present antigenic peptides to lymphocytes. Neutrophil interactions with immune cells, in particular dendritic cells, lead to the formation of IL-12 and TNF-alpha deviating the immune response towards a Th1 phenotype. Thus, the neutrophil exhibits a cellular plasticity that explains its capacity to transdifferentiate depending on the local requirements of the immune response. The neutrophil is probably the most underappreciated immune cell among hematopoietic leukocytes, and many neutrophil functions remain to be unraveled.  相似文献   

13.
14.
Osteopontin (OPN) is a secreted calcium-binding phosphoprotein produced in a variety of normal and pathological contexts, including tissue mineralization and cancer. OPN contains a conserved RGD (arg-gly-asp) amino acid sequence that has been implicated in binding of OPN to cell surface integrins. To determine whether the RGD sequence in OPN is required for adhesive and chemotactic functions, we have introduced two site-directed mutations in the RGD site of the mouse OPN cDNA, in which the RGD sequence was either deleted or mutated to RGE (arg-gly-glu). In order to test the effect of these mutations on OPN function, we expressed control and mutated mouse OPN in E. coli as recombinant glutathione-S-transferase (GST)-OPN fusion proteins. Control mouse GST-OPN was functional in cell adhesion assays, supporting attachment and spreading of mouse (malignant PAP2 ras-transformed NIH 3T3, and, to a lesser extent, normal NIH 3T3 fibroblasts) and human (MDA-MB-435 breast cancer, and normal gingival fibroblast) cells. In contrast, neither of the RGD-mutated OPN proteins (“delRGD” or “RGE”) supported adhesion of any of the cell lines, even when used at high concentrations or for long assay times. GRGDS (gly-arg-gly-asp-ser) peptides inhibited cell adhesion to intact GST-OPN, as well as to fibronectin and vitronectin. In chemotaxis assays, GST-OPN promoted directed cell migration of both malignant (PAP2, MDA-MB-435) and normal (gingival fibroblast, and NIH 3T3) cells, while RGD-mutated OPN proteins did not. Together these results suggest that the conserved RGD sequence in OPN is required for the majority of the protein's cell attachment and migration-stimulating functions.  相似文献   

15.
There is currently a major interest in designing vaccines capable of eliciting strong cellular immune responses. The induction of cytotoxic and Th1 helper cellular responses is for example highly desirable for vaccines targeting either chronic infectious diseases or cancers (therapeutic vaccines). Similarly, Th1 vaccines would be useful in redirecting inappropriate antigen-specific immune responses in patients with autoimmune diseases and allergies. Importantly, emerging technologies and a better understanding of the physiology of immune responses offer new avenues to rationally design such vaccines. Approaches based on the identification and selection of immunogens containing T cell epitopes can be used, together with epitope-enhancement strategies, to increase binding to MHC, or to improve recognition by T cell receptor complexes. Optimized immunogens can subsequently be presented to the immune system with appropriate vectors allowing to target professional antigen-presenting cells, such as dendritic cells. Such antigen presentation platforms can be used alone or in association, as part of mixed immunization regimens (heterologous prime-boosts), in order to elicit broad immune responses. The rational design of Th1 adjuvants can also benefit from our better understanding of the nature of proinflammatory signals leading to the initiation of both innate and adaptive immune effector mechanisms. Candidate Th1 vaccines (or components such as vectors or adjuvants) will have to be tested in exploratory clinical studies, implying a need for new assays and methods allowing to assess in a qualitative and quantitative manner low-frequency T cell responses in humans.  相似文献   

16.
Tumor-derived osteopontin is soluble, not matrix associated.   总被引:5,自引:0,他引:5  
The secreted phosphoprotein osteopontin (OPN), when immobilized on a surface, supports cell adhesion, prevents apoptosis of endothelial cells, and is a ligand for the alpha(v)beta(3) integrin, which is important in endothelial cell biology and neovascularization. OPN synthesized by tumor cells stimulates tumor growth, but the mechanism by which the protein acts remains unclear. One possibility, therefore, is that OPN may exert its effects on tumor growth by enhancing angiogenesis. While OPN is found at high levels in bone, where it is a component of the mineralized matrix, we have asked here whether OPN present in tumors is similarly extracellular matrix associated. We have shown that OPN is detectable in tumor extracts and in serum of tumor-bearing mice, and that the protein in tumors and in serum can be synthesized by both tumor and the host cells. Biochemical fractionation of tumor tissue confirmed that there is little if any association of OPN with the insoluble fraction. Immunochemical analysis of murine mammary tumors shows no co-localization of OPN with the extracellular matrix, identified by laminin staining. Ras-transformed cells in culture produce abundant OPN, however, the protein was found to be associated with the cell fraction but not with the matrix fraction. An enzyme-linked immunosorbent assay was used to demonstrate that OPN in conditioned medium from these cells fails to associate with extracellular matrix components, including laminin and fibronectin, in vitro. Recombinant OPN (GST-OPN) when coated onto a plastic surface can support human umbilical vein endothelial cell adhesion, suppressing apoptosis and allowing cell cycle progression, at concentrations from 1 to 50 microg/ml. Soluble GST-OPN in the same concentration range has no effect on HUVECs held in suspension. Thus, we conclude that OPN associated with tumors is primarily soluble, and that soluble OPN can neither support endothelial cell proliferation nor prevent apoptosis of these cells in the absence of adhesion.  相似文献   

17.
Gingival epithelial cells are part of the first line of host defense against infection. Toll-like receptors (TLRs) serve important immune and nonimmune functions. We investigated how interferon gamma (INF-γ) and interleukin 13 (IL-13) are involved in the TLR4 ligand-induced regulation of interleukin-8 (IL-8) effects on gingival epithelial cells. We used immunohistochemistry to localize TLR4 in ten healthy and ten periodontitis tissue specimens. Gingival epithelial cells then were primed with Th1 cytokine (INF-γ) or Th2 cytokine (IL-13) before stimulation with Escherichia coli-derived lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) was performed to detect the level of IL-8 secretion in cell culture supernatants. Although both healthy and periodontitis gingival tissue samples expressed TLR4, the periodontitis samples showed more intense expression on gingival epithelial cells. Gingival epithelial cell cultures were primed with either INF-γ or IL-13 before stimulation with TLR4 ligand. Supernatants from co-stimulated epithelial cells exhibited IL-8 production in opposite directions, i.e., as one stimulates the release, the other reduces the release. INF-γ significantly increased TLR4 function, whereas IL-13 significantly decreased TLR4 function, i.e., production of IL-8. Pathogen associated molecular pattern-LPS, shared by many different periodonto-pathogenic bacteria, activates the gingival epithelial cells in a TLR-dependent manner. Diminished or increased TLR function in gingival epithelial cells under the influence of different Th cell types may protect or be harmful due to the altered TLR signaling.  相似文献   

18.
Osteopontin aggravates experimental autoimmune uveoretinitis in mice   总被引:1,自引:0,他引:1  
Human endogenous uveitis is a common sight-threatening intraocular inflammatory disease and has been studied extensively using a murine model of experimental autoimmune uveoretinitis (EAU). It is possibly mediated by Th1 immune responses. In the present study, we investigated the role of osteopontin (OPN), a protein with pleiotropic functions that contributes to the development of Th1 cell-mediated immunity. Accompanying EAU progression, OPN was elevated in wild-type (WT) mice that had been immunized with human interphotoreceptor retinoid-binding protein (hIRBP) peptide 1-20. OPN-deficient (OPN-/-) mice showed milder EAU progression in clinical and histopathological scores compared with those of WT mice. The T cells from hIRBP-immunized OPN-/- mice exhibited reduced Ag-specific proliferation and proinflammatory cytokine (TNF-alpha and IFN-gamma) production compared with those of WT T cells. When hIRBP-immunized WT mice were administered M5 Ab reacting to SLAYGLR sequence, a cryptic binding site to integrins within OPN, EAU development was significantly ameliorated. T cells from hIRBP-immunized WT mice showed significantly reduced proliferative responses and proinflammatory cytokine production upon stimulation with hIRBP peptide in the presence of M5 Ab in the culture. Our present results demonstrate that OPN may represent a novel therapeutic target to control uveoretinitis.  相似文献   

19.
Osteopontin (OPN) is a multifunctional protein participating in the regulation of different Th cell lineages and critically involved in the initiation of immune responses to diverse pathogens. Our study goal was to verify whether OPN helps modulate the protective Th1 and Th17 cytokine responses in C57BL/6 mice infected with Trypanosoma cruzi, the etiological agent of Chagas disease. Parasite infection induced OPN release from murine macrophages in vitro and acute Chagas mice displayed enhanced serum levels of this cytokine at the peak of parasitemia. Upon administration of a neutralizing anti-OPN antibody, recently infected mice presented lower Th1 and Th17 responses, increased parasitemia and succumbed earlier and at higher rates to infection than non-immune IgG-receiving controls. The anti-OPN therapy also resulted in reduced circulating levels of IL-12 p70, IFN-γ, IL-17A and specific IgG2a antibodies. Furthermore, antibody-mediated blockade of OPN activity abrogated the ex vivo production of IL-12 p70, IFN-γ and IL-17A, while promoting IL-10 secretion, by spleen macrophages and CD4+ T cells from T. cruzi-infected mice. Th1 and Th17 cytokine release induced by OPN preferentially involved the αvβ3 integrin OPN receptor, whereas concomitant down-modulation of IL-10 production would mostly depend on OPN interaction with CD44. Our findings suggest that, in resistant C57BL/6 mice, elicitation of protective Th1 and Th17 cytokine responses to T. cruzi infection is likely to be regulated by endogenous OPN.  相似文献   

20.
Metastatic cancer cells, like trophoblasts of the developing placenta, are invasive and must escape immune surveillance to survive. Complement has long been thought to play a significant role in the tumor surveillance mechanism. Bone sialoprotein (BSP) and osteopontin (OPN, ETA-1) are expressed by trophoblasts and are strongly up-regulated by many tumors. Indeed, BSP has been shown to be a positive indicator of the invasive potential of some tumors. In this report, we show that BSP and OPN form rapid and tight complexes with complement Factor H. Besides its key role in regulating complement-mediated cell lysis, Factor H also appears to play a role when "hijacked" by invading organisms in enabling cellular evasion of complement. We have investigated whether BSP and OPN may play a similar role in tumor cell complement evasion by testing to see whether these glycoproteins could promote tumor cell survival. Recombinant OPN and BSP can protect murine erythroleukemia cells from attack by human complement as well as human MCF-7 breast cancer cells and U-266 myeloma cells from attack by guinea pig complement. The mechanism of this gain of function by tumor cell expression of BSP or OPN has been defined using specific peptides and antibodies to block BSP and OPN protective activity. The expression of BSP and OPN in tumor cells provides a selective advantage for survival via initial binding to alpha(V)beta(3) integrin (both) or CD44 (OPN) on the cell surface, followed by sequestration of Factor H to the cell surface and inhibition of complement-mediated cell lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号