首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. Availability: DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree  相似文献   

2.
The problem of inferring confidence sets of gene trees is discussed without assuming that the substitution model or the branching pattern of any of the investigated trees is correct. In this case, widely used methods to compare genealogies can give highly contradicting results. Here, three methods to infer confidence sets that are robust against model misspecification are compared, including a new approach based on estimating the confidence in a specific tree using expected-likelihood weights. The power of the investigated methods is studied by analysing HIV-1 and mtDNA sequence data as well as simulated sequences. Finally, guidelines for choosing an appropriate method to compare multiple gene trees are provided.  相似文献   

3.
One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this article, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.  相似文献   

4.
Most plant phylogenetic inference has used DNA sequence data from the plastid genome. This genome represents a single genealogical sample with no recombination among genes, potentially limiting the resolution of evolutionary relationships in some contexts. In contrast, nuclear DNA is inherently more difficult to employ for phylogeny reconstruction because major mutational events in the genome, including polyploidization, gene duplication, and gene extinction can result in homologous gene copies that are difficult to identify as orthologs or paralogs. Gene tree parsimony (GTP) can be used to infer the rooted species tree by fitting gene genealogies to species trees while simultaneously minimizing the estimated number of duplications needed to reconcile conflicts among them. Here, we use GTP for five nuclear gene families and a previously published plastid data set to reconstruct the phylogenetic backbone of the aquatic plant family Pontederiaceae. Plastid-based phylogenetic studies strongly supported extensive paraphyly of Eichhornia (one of the four major genera) but also depicted considerable ambiguity concerning the true root placement for the family. Our results indicate that species trees inferred from the nuclear genes (alone and in combination with the plastid data) are highly congruent with gene trees inferred from plastid data alone. Consideration of optimal and suboptimal gene tree reconciliations place the root of the family at (or near) a branch leading to the rare and locally restricted E. meyeri. We also explore methods to incorporate uncertainty in individual gene trees during reconciliation by considering their individual bootstrap profiles and relate inferred excesses of gene duplication events on individual branches to whole-genome duplication events inferred for the same branches. Our study improves understanding of the phylogenetic history of Pontederiaceae and also demonstrates the utility of GTP for phylogenetic analysis.  相似文献   

5.
Multilocus coalescent methods for inferring species trees or historical demographic parameters typically require the assumption that gene trees for sampled SNPs or DNA sequence loci are conditionally independent given their species tree. In practice, researchers have used different criteria to delimit “independent loci.” One criterion identifies sampled loci as being independent of each other if they undergo Mendelian independent assortment (IA criterion). O'Neill et al. (2013, Molecular Ecology, 22, 111–129) used this approach in their phylogeographic study of North American tiger salamander species complex. In two other studies, researchers developed a pair of related methods that employ an independent genealogies criterion (IG criterion), which considers the effects of population‐level recombination on correlations between the gene trees of intrachromosomal loci. Here, I explain these three methods, illustrate their use with example data, and evaluate their efficacies. I show that the IA approach is more conservative, is simpler to use and requires fewer assumptions than the IG approaches. However, IG approaches can identify much larger numbers of independent loci than the IA method, which, in turn, allows researchers to obtain more precise and accurate estimates of species trees and historical demographic parameters. A disadvantage of the IG methods is that they require an estimate of the population recombination rate. Despite their drawbacks, IA and IG approaches provide molecular ecologists with promising a priori methods for selecting SNPs or DNA sequence loci that likely meet the independence assumption in coalescent‐based phylogenomic studies.  相似文献   

6.
Toward the goal of recovering the phylogenetic relationships among elapid snakes, we separately found the shortest trees from the amino acid sequences for the venom proteins phospholipase A2and the short neurotoxin, collectively representing 32 species in 16 genera. We then applied a method we term gene tree parsimony for inferring species trees from gene trees that works by finding the species tree which minimizes the number of deep coalescences or gene duplications plus unsampled sequences necessary to fit each gene tree to the species tree. This procedure, which is both logical and generally applicable, avoids many of the problems of previous approaches for inferring species trees from gene trees. The results support a division of the elapids examined into sister groups of the Australian and marine (laticaudines and hydrophiines) species, and the African and Asian species. Within the former clade, the sea snakes are shown to be diphyletic, with the laticaudines and hydrophiines having separate origins. This finding is corroborated by previous studies, which provide support for the usefulness of gene tree parsimony.  相似文献   

7.
Liu L  Yu L 《Systematic biology》2011,60(5):661-667
In this study, we develop a distance method for inferring unrooted species trees from a collection of unrooted gene trees. The species tree is estimated by the neighbor joining (NJ) tree built from a distance matrix in which the distance between two species is defined as the average number of internodes between two species across gene trees, that is, average gene-tree internode distance. The distance method is named NJ(st) to distinguish it from the original NJ method. Under the coalescent model, we show that if gene trees are known or estimated correctly, the NJ(st) method is statistically consistent in estimating unrooted species trees. The simulation results suggest that NJ(st) and STAR (another coalescence-based method for inferring species trees) perform almost equally well in estimating topologies of species trees, whereas the Bayesian coalescence-based method, BEST, outperforms both NJ(st) and STAR. Unlike BEST and STAR, the NJ(st) method can take unrooted gene trees to infer species trees without using an outgroup. In addition, the NJ(st) method can handle missing data and is thus useful in phylogenomic studies in which data sets often contain missing loci for some individuals.  相似文献   

8.
Gene tree distributions under the coalescent process   总被引:10,自引:0,他引:10  
Under the coalescent model for population divergence, lineage sorting can cause considerable variability in gene trees generated from any given species tree. In this paper, we derive a method for computing the distribution of gene tree topologies given a bifurcating species tree for trees with an arbitrary number of taxa in the case that there is one gene sampled per species. Applications for gene tree distributions include determining exact probabilities of topological equivalence between gene trees and species trees and inferring species trees from multiple datasets. In addition, we examine the shapes of gene tree distributions and their sensitivity to changes in branch lengths, species tree shape, and tree size. The method for computing gene tree distributions is implemented in the computer program COAL.  相似文献   

9.
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.  相似文献   

10.
Chung Y  Ané C 《Systematic biology》2011,60(3):261-275
With the increasing interest in recognizing the discordance between gene genealogies, various gene tree/species tree reconciliation methods have been developed. We present here the first attempt to assess and compare two such Bayesian methods, Bayesian estimation of species trees (BEST) and BUCKy (Bayesian untangling of concordance knots), in the presence of several known processes of gene tree discordance. DNA alignments were simulated under the influence of incomplete lineage sorting (ILS) and of horizontal gene transfer (HGT). BEST and BUCKy both account for uncertainty in gene tree estimation but differ substantially in their assumptions of what caused gene tree discordance. BEST estimates a species tree using the coalescent model, assuming that all gene tree discordance is due to ILS. BUCKy does not assume any specific biological process of gene tree discordance through the use of a nonparametric clustering of concordant genes. BUCKy estimates the concordance factor (CF) of a clade, which is defined as the proportion of genes that truly have the clade in their trees. The estimated concordance tree is then built from clades with the highest estimated CFs. Because of their different assumptions, it was expected that BEST would perform better in the presence of ILS and that BUCKy would perform better in the presence of HGT. As expected, the species tree was more accurately reconstructed by BUCKy in the presence of HGT, when the HGT events were unevenly placed across the species tree. BUCKy and BEST performed similarly in most other cases, including in the presence of strong ILS and of HGT events that were evenly placed across the tree. However, BUCKy was shown to underestimate the uncertainty in CF estimation, with short credibility intervals. Despite this, the discordance pattern estimated by BUCKy could be compared with the signature of ILS. The resulting test for the adequacy of the coalescent model proved to have low Type I error. It was powerful when HGT was the major source of discordance and when HGT events were unevenly placed across the species tree.  相似文献   

11.
Choosing among alternative trees of multigene families   总被引:4,自引:0,他引:4  
Estimation of gene trees is the first step in testing alternative hypotheses about the evolution of multigene families. The standard practice for inferring gene family history is to construct trees that meet some objective criteria based on the fit of the character state changes (nucleotide or amino acid changes) to the gene tree. Unfortunately, analysis of character state data can be misleading. In addition, this approach ignores information about the relationships of the species from which the genes have been sampled. In this paper I explore using statistics of fit between the character data and gene trees and the reconciliation of the gene and species trees for choosing among alternative evolutionary hypotheses of gene families. In particular, I advocate a two-pronged strategy for choosing among alternative gene trees. First, the character data are used to define a set of acceptable gene trees (i.e., trees that are not significantly different from the minimum length tree). Next, the set of acceptable gene trees is reconciled with a known species tree, and the gene tree requiring the fewest number of gene duplications and losses is adopted as the best estimate of evolutionary history. The approach is illustrated using three gene families: BMP, EGR, and LDH.  相似文献   

12.
Clonal lineages in the filamentous ascomycete (fungi) Sclerotinia sclerotiorum were determined by analysis of genealogies of four loci: the intergenic spacer of the nuclear ribosomal repeat (IGS; approximately 4 kb), the translation elongation factor (EF-1α; approximately 300 bp), an anonymous region (44.11; approximately 700 bp), and the calmodulin gene (CAL; approximately 400 bp). Three of the four loci are physically unlinked. The combined analysis of the four loci provided the best estimate of phylogeny, which is consistent with a pattern of some recombination among clonal lineages against a background of predominant clonality. Comparison of gene genealogies with a phylogeny inferred from DNA fingerprints and a combined phylogeny of the entire dataset identified convergent or parallel changes in fingerprints. Analysis of the entire data matrix allowed us to resolve patterns of descent among clonal lineages that could not be inferred from fingerprints alone and to discern recent episodes of divergence that were not detected in gene genealogies. Prerequisites for applying this approach to other systems are a haploid context for inferring multiple gene genealogies (such as the mitochondrial genome) that indicate limited recombination and another data matrix that identifies recently evolved genotypes.  相似文献   

13.
MOTIVATION: Maximum-likelihood analysis of nucleotide and amino acid sequences is a powerful approach for inferring phylogenetic relationships and for comparing evolutionary hypotheses. Because it is a computationally demanding and time-consuming process, most algorithms explore only a minute portion of tree-space, with the emphasis on finding the most likely tree while ignoring the less likely, but not significantly worse, trees. However, when such trees exist, it is equally important to identify them to give due consideration to the phylogenetic uncertainty. Consequently, it is necessary to change the focus of these algorithms such that near optimal trees are also identified. RESULTS: This paper presents the Advanced Stepwise Addition Algorithm for exploring tree-space and two algorithms for generating all binary trees on a set of sequences. The Advanced Stepwise Addition Algorithm has been implemented in TrExML, a phylogenetic program for maximum-likelihood analysis of nucleotide sequences. TrExML is shown to be more effective at finding near optimal trees than a similar program, fastDNAml, implying that TrExML offers a better approach to account for phylogenetic uncertainty than has previously been possible. A program, TreeGen, is also described; it generates binary trees on a set of sequences allowing for extensive exploration of tree-space using other programs. AVAILABILITY: TreeGen, TrExML, and the sequence data used to test the programs are available from the following two WWW sites: http://whitetail.bemidji.msus. edu/trexml/and http://jcsmr.anu.edu.au/dmm/humgen.+ ++html.  相似文献   

14.
Gene duplication and gene loss as well as other biological events can result in multiple copies of genes in a given species. Because of these gene duplication and loss dynamics, in addition to variation in sequence evolution and other sources of uncertainty, different gene trees ultimately present different evolutionary histories. All of this together results in gene trees that give different topologies from each other, making consensus species trees ambiguous in places. Other sources of data to generate species trees are also unable to provide completely resolved binary species trees. However, in addition to gene duplication events, speciation events have provided some underlying phylogenetic signal, enabling development of algorithms to characterize these processes. Therefore, a soft parsimony algorithm has been developed that enables the mapping of gene trees onto species trees and modification of uncertain or weakly supported branches based on minimizing the number of gene duplication and loss events implied by the tree. The algorithm also allows for rooting of unrooted trees and for removal of in-paralogues (lineage-specific duplicates and redundant sequences masquerading as such). The algorithm has also been made available for download as a software package, Softparsmap.  相似文献   

15.
URec is a software based on a concept of unrooted reconciliation. It can be used to reconcile a set of unrooted gene trees with a rooted species tree or a set of rooted species trees. Moreover, it computes detailed distribution of gene duplications and gene losses in a species tree. It can be used to infer optimal species phylogenies for a given set of gene trees. URec is implemented in C++ and can be easily compiled under Unix and Windows systems. Availability: Software is freely available for download from our website at http://bioputer.mimuw.edu.pl/~gorecki/urec. This webpage also contains Windows executables and a number of advanced examples with explanations.  相似文献   

16.
Kuo CH  Avise JC 《Genetica》2005,124(2-3):179-186
Computer simulations were used to investigate population conditions under which phylogeographic breaks in gene genealogies can be interpreted with confidence to infer the existence and location of historical barriers to gene flow in continuously distributed, low-dispersal species. We generated collections of haplotypic gene trees under a variety of demographic scenarios and analyzed them with regard to salient genealogical breaks in their spatial patterns. In the first part of the analysis, we estimated the frequency in which the spatial location of the deepest phylogeographic break between successive pairs of populations along a linear habitat coincided with a spatial physical barrier to dispersal. Results confirm previous reports that individual gene trees can show ‘haphazard’ phylogeographic discontinuities even in the absence of historical barriers to gene flow. In the second part of the analysis, we assessed the probability that pairs of gene genealogies from a set of population samples agree upon the location of a geographical barrier. Our findings extend earlier reports by demonstrating that spatially concordant phylogeographic breaks across independent neutral loci normally emerge only in the presence of longstanding historical barriers to gene flow. Genealogical concordance across multiple loci thus becomes a deciding criterion by which to distinguish between stochastic and deterministic causation in accounting for phylogeographic discontinuities in continuously distributed species.  相似文献   

17.
Molecular phylogenetics has entered a new era in which species trees are estimated from a collection of gene trees using methods that accommodate their heterogeneity and discordance with the species tree. Empirical evaluation of species trees is necessary to assess the performance (i.e., accuracy and precision) of these methods with real data, which consists of gene genealogies likely shaped by different historical and demographic processes. We analyzed 20 loci for 16 species of the South American lizards of the Liolaemus darwinii species group and reconstructed a species tree with *BEAST, then compared the performance of this method under different sampling strategies of loci, individuals, and sequence lengths. We found an increase in the accuracy and precision of species trees with the number of loci, but for any number of loci, accuracy substantially decreased only when using only one individual per species or 25% of the full sequence length (~ 147 bp). In addition, locus "informativeness" was an important factor in the accuracy/precision of species trees when using a few loci, but it became increasingly irrelevant with additional loci. Our empirical results combined with the previous simulation studies suggest that there is an optimal range of sampling effort of loci, individuals, and sequence lengths for a given speciation history and information content of the data. Future studies should be directed toward further assessment of other factors that can impact performance of species trees, including gene flow, locus "informativeness," tree shape, missing data, and errors in species delimitation.  相似文献   

18.
SUMMARY: We describe an algorithm and software tool for comparing alternative phylogenetic trees. The main application of the software is to compare phylogenies obtained using different phylogenetic methods for some fixed set of species or obtained using different gene sequences from those species. The algorithm pairs up each branch in one phylogeny with a matching branch in the second phylogeny and finds the optimum 1-to-1 map between branches in the two trees in terms of a topological score. The software enables the user to explore the corresponding mapping between the phylogenies interactively, and clearly highlights those parts of the trees that differ, both in terms of topology and branch length. AVAILABILITY: The software is implemented as a Java applet at http://www.mrc-bsu.cam.ac.uk/personal/thomas/phylo_comparison/comparison_page.html. It is also available on request from the authors.  相似文献   

19.
Slatkin M  Pollack JL 《Genetics》2006,172(3):1979-1984
The gene genealogies of two linked loci in three species are analyzed using a series of Markov chain models. We calculate the probability that the gene tree of one locus is concordant with the species tree, given that the gene tree of the other locus is concordant. We define a threshold value of the recombination rate, r*, to be the rate for which the difference between the conditional probability of concordance and its asymptotic value is reduced to 5% of the initial difference. We find that, although r* depends in a complicated way on the times of speciation and effective population sizes, it is always relatively small, <10/N4, where N4 is the effective size of the species represented by the internal branch of the species tree. Consequently, the concordance of gene trees of neutral loci with the species tree is expected to be on roughly the same length scale on the chromosome as the extent of significant linkage disequilibrium within species unless the effective size of contemporary populations is very different from the effective sizes of their ancestral populations. Both balancing selection and selective sweeps can result in much longer genomic regions having concordant gene trees.  相似文献   

20.
Numerous simulation studies have investigated the accuracy of phylogenetic inference of gene trees under maximum parsimony, maximum likelihood, and Bayesian techniques. The relative accuracy of species tree inference methods under simulation has received less study. The number of analytical techniques available for inferring species trees is increasing rapidly, and in this paper, we compare the performance of several species tree inference techniques at estimating recent species divergences using computer simulation. Simulating gene trees within species trees of different shapes and with varying tree lengths (T) and population sizes (), and evolving sequences on those gene trees, allows us to determine how phylogenetic accuracy changes in relation to different levels of deep coalescence and phylogenetic signal. When the probability of discordance between the gene trees and the species tree is high (i.e., T is small and/or is large), Bayesian species tree inference using the multispecies coalescent (BEST) outperforms other methods. The performance of all methods improves as the total length of the species tree is increased, which reflects the combined benefits of decreasing the probability of discordance between species trees and gene trees and gaining more accurate estimates for gene trees. Decreasing the probability of deep coalescences by reducing also leads to accuracy gains for most methods. Increasing the number of loci from 10 to 100 improves accuracy under difficult demographic scenarios (i.e., coalescent units ≤ 4N(e)), but 10 loci are adequate for estimating the correct species tree in cases where deep coalescence is limited or absent. In general, the correlation between the phylogenetic accuracy and the posterior probability values obtained from BEST is high, although posterior probabilities are overestimated when the prior distribution for is misspecified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号