首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribozymes have a great potential for developing specific gene silencing molecules. One of the main limitations to ensure the efficient application of ribozymes is to achieve effective binding to the target. Stem-loop domains support efficient formation of the kissing complex between natural antisense molecules and their target sequence. We have characterized catalytic antisense RNA hybrid molecules composed of a hammerhead ribozyme and a stem-loop antisense domain. A series of artificial RNA substrates containing the TAR-RNA stem-loop and a target for the hammerhead ribozyme were constructed and challenged with a catalytic antisense RNA carrying the TAR complementary stem-loop. The catalytic antisense RNA cleaves each of these substrates significantly more efficiently than the parental hammerhead ribozyme. Deletion of the TAR domain in the substrate abolishes the positive effect. These results suggest that the enhancement is due to the interaction of both complementary stem-loop motifs. A similar improvement was corroborated when targeting the LTR region of HIV-1 with either hammerhead- and hairpin-based catalytic antisense RNAs. Our results indicate that the TAR domain can be used as an anchoring site to facilitate the access of ribozymes to their specific target sequences within TAR-containing RNAs. Finally, we propose the addition of stable stem-loop motifs to the ribozyme domain as a rational way for constructing catalytic antisense RNAs.  相似文献   

2.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

3.
Efficient ribozyme-mediated gene silencing requires the effective binding of a ribozyme to its specific target sequence. Stable stem-loop domains are key elements for efficiency of natural antisense RNAs. This work tests the possibility of using such naturally existing structural motifs for anchoring hairpin ribozymes when targeting long RNAs. Assays were performed with four catalytic antisense RNAs, based on the hairpin ribozyme (HP), that carried a stable stem-loop motif at their 3' end. Extensions consisted of one of the following motifs: the stem-loop II of the natural antisense RNA-CopA, its natural target in CopT, the TAR-RNA motif, or its complementary sequence alphaTAR. Interestingly, the presence of any of these antisense motifs resulted in an enhancement of catalytic performance against the ribozyme's 14-nucleotide-long target RNA (Swt). A series of artificial, long RNA substrates containing the Swt sequence and the natural TAR-RNA stem-loop were constructed and challenged with a catalytic antisense RNA carrying the TAR-complementary stem-loop. This cleaves each of these substrates significantly more efficiently than HP. The deletion of the TAR domain in the substrate, or its substitution by its complementary counterpart alphaTAR, abolishes the positive effect. These results suggest that the enhancement is owed to the interaction of both complementary stem-loop domains. Moreover, they demonstrate that the TAR domain can be used as an anchoring site to facilitate the access of hairpin ribozymes to their specific target sequences within TAR-containing RNAs.  相似文献   

4.
5.
6.
This communication describes a two unit antisense RNA cassette system for use in gene silencing. Cassettes consist of a recognition unit and an inhibitory unit which are transcribed into a single RNA that carries sequences of non-contiguous complementarity to the chosen target RNA. The recognition unit is designed as a stem-loop for rapid formation of long- lived binding intermediates with target sequences and resembles the major stem-loop of a naturally occurring antisense RNA, CopA. The inhibitory unit consists of either a sequence complementary to a ribosome binding site or of a hairpin ribozyme targeted at a site within the chosen mRNA. The contributions of the individual units to inhibition was assessed using the lacI gene as a target. All possible combinations of recognition and inhibitory units were tested in either orientation. In general, inhibition of lacI expression was relatively low. Fifty per cent inhibition was obtained with the most effective of the constructs, carrying the recognition stem-loop in the antisense orientation and the inhibitory unit with an anti-RBS sequence. Several experiments were performed to assess activities of the RNAs in vitro and in vivo : antisense RNA binding assays, cleavage assays, secondary structure analysis as well as Northern blotting and primer extension analysis of antisense and target RNAs. The problems associated with this antisense RNA approach as well as its potential are discussed with respect to possible optimization strategies.  相似文献   

7.
Translation initiation driven by internal ribosome entry site (IRES) elements is dependent on the structural organization of the IRES region. We have previously shown that a structural motif within the foot-and-mouth-disease virus IRES is recognized in vitro as substrate for the Synechocystis sp. RNase P ribozyme. Here we show that this structure-dependent endonuclease recognizes the IRES element in cultured cells, leading to inhibition of translation. Inhibition of IRES activity was dependent on the expression of the active ribozyme RNA subunit. Moreover, expression of the antisense sequence of the ribozyme did not inhibit IRES activity, demonstrating that stable RNA structures located upstream of the IRES element do not interfere with internal initiation. RNAs carrying defective IRES mutants that were substrates of the ribozyme in vivo revealed an increased translation of the reporter in response to the expression of the active ribozyme. In support of RNA cleavage, subsequent analysis of the translation initiation manner indicated a switch from IRES-dependent to 5′-end-dependent translation of RNase P target RNAs. We conclude that the IRES element is inactivated by expression in cis of RNase P in the cytoplasm of cultured cells, providing a promising antiviral tool to combat picornavirus infections. Furthermore, our results reinforce the essential role of the structural motif that serves as RNase P recognition motif for IRES activity.  相似文献   

8.
We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust binding of cellulose in both the powdered and paper form, but did not show any significant binding of closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using glucosamine 6-phosphate to activate glmS ribozyme function.  相似文献   

9.
We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust binding of cellulose in both the powdered and paper form, but did not show any significant binding of closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using glucosamine 6-phosphate to activate glmS ribozyme function.  相似文献   

10.
A circular trans-acting hepatitis delta virus ribozyme.   总被引:8,自引:3,他引:5       下载免费PDF全文
A circular trans-acting ribozyme designed to adopt the motif of the hepatitis delta virus (HDV) trans-acting ribozyme was produced. The circular form was generated in vitro by splicing a modified group I intron precursor RNA in which the relative order of the 5' and 3' splice sites, flanking the single HDV-like ribozyme sequence-containing exon, is reversed. Trans-cleavage activity of the circular HDV-like ribozyme was comparable to linear permutations of HDV ribozymes containing the same core sequence, and was shown not to be due to linear contaminants in the circular ribozyme preparation. In nuclear and cytoplasmic extracts from HeLa cells, the circular ribozyme had enhanced resistance to nuclease degradation relative to a linear form of the ribozyme, suggesting that circularization may be a viable alternative to chemical modification as a means of stabilizing ribozymes against nuclease degradation.  相似文献   

11.
The hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma. The development of alternative antiviral therapies is warranted because current treatments for the HCV infection affect only a limited number of patients and lead to significant toxicities. The HCV genome is exclusively present in the RNA form; therefore, ribozyme strategies to target certain HCV sequences have been proposed as anti-HCV treatments. In this study, we determined which regions of the internal ribosome entry site (IRES) of HCV are accessible to ribozymes by employing an RNA mapping strategy that is based on a trans-splicing ribozyme library. We then discovered that the loop regions of the domain IIIb of HCV IRES appeared to be particularly accessible. Moreover, to verify if the target sites that were predicted to be accessible are truly the most accessible, we assessed the ribozyme activities by comparing not only the trans-splicing activities in vitro but also the trans-cleavage activities in cells of several ribozymes that targeted different sites. The ribozyme that could target the most accessible site identified by mapping studies was then the most active with high fidelity in cells as well as in vitro. These results demonstrate that the RNA mapping strategy represents an effective method to determine the accessible regions of target RNAs and have important implications for the development of various antiviral therapies which are based on RNA such as ribozyme, antisense, or siRNA.  相似文献   

12.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

13.
The subclass of catalytic RNAs termed ribozymes cleave specific target RNA sequences in vitro. Only circumstantial evidence supports the idea that ribozymes may also act in vivo. In this study, ribozymes with a hammerhead motif directed against a target sequence within the mRNA of the neomycin phosphotransferase gene (npt) were embedded into a functional chimeric gene. Two genes, one containing the ribozyme and the other producing the target, were cotransfected into plant protoplasts. Following in vivo expression, a predefined cleavage product of the target mRNA was detected by ribonuclease protection. Expression of both the ribozyme gene and the target gene was driven by the CaMV 35S promoter. Concomitant with the endonucleolytic cleavage of the target mRNA, a complete reduction of NPT activity was observed. An A to G substitution within the ribozyme domain completely inactivates ribozyme-mediated hydrolysis but still shows a reduction in NPT activity, albeit less pronounced. Therefore, the reduction of NPT activity produced by the active ribozyme is best explained by both hydrolytic cleavage and an antisense effect. However, the mutant ribozyme--target complex was more stable than the wildtype ribozyme--target complex. This may result in an overestimation of the antisense effect contributing to the overall reduction of gene expression.  相似文献   

14.
15.
Delta ribozyme possesses several unique features related to the fact that it is the only catalytic RNA known to be naturally active in human cells. This makes it attractive as a therapeutic tool for the inactivation of clinically relevant RNAs. However, several hurdles must be overcome prior to the development of useful gene-inactivation systems based on delta ribozyme. We have developed three procedures for the selection of potential delta ribozyme target sites within the hepatitis B virus (HBV) pregenome: (i) the use of bioinformatic tools coupled to biochemical assays; (ii) RNase H hydrolysis with a pool of oligonucleotides; and (iii) cleavage assays with a pool of ribozymes. The results obtained with delta ribozyme show that these procedures are governed by several rules, some of which are different from those both for other catalytic RNAs and antisense oligonucleotides. Together, these procedures identified 12 sites in the HBV pregenome that can be cleaved by delta ribozymes, although with different efficiencies. Clearly, both target site accessibility and the ability to form an active ribozyme–substrate complex constitute interdependent factors that can best be addressed using a combinatorial library of either oligonucleotides or ribozymes.  相似文献   

16.
Spontaneous cleavage of the less abundant form of tobacco ringspot virus satellite RNA is readily reversible. Capitalizing on earlier observations by Feldstein and Bruening that small 'mini-monomer' RNAs derived from this molecule and containing little more than covalently attached ribozyme and substrate cleavage products are able to efficiently circularize, we have constructed a series of self-circularizing RNAs of precisely known size. Mixtures of linear and circular RNAs synthesized in vitro and containing 225-1132 nt could be completely resolved using a novel two-dimensional denaturing polyacrylamide gel electrophoresis system. Similar analyses of a complex mixture of coconut cadang-cadang viroid RNAs revealed the presence of relatively large amounts of a previously undescribed 'fast-slow' heterodimeric RNA species in infected palms. Only a single DNA template is required to prepare each pair of circular and linear RNA markers.  相似文献   

17.
18.
In several groups of bacterial plasmids, antisense RNAs regulate copy number through inhibition of replication initiator protein synthesis. In plasmid R1, we have recently shown that the inhibitory complex between the antisense RNA (CopA) and its target mRNA (CopT) is characterized by the formation of two intermolecular helices, resulting in a four-way junction structure and a side-by-side helical alignment. Based on lead-induced cleavage and ribonuclease (RNase) V(1) probing combined with molecular modeling, a strikingly similar topology is supported for the complex formed between the antisense RNA (Inc) and mRNA (RepZ) of plasmid Col1b-P9. In particular, the position of the four-way junction and the location of divalent ion-binding site(s) indicate that the structural features of these two complexes are essentially the same in spite of sequence differences. Comparisons of several target and antisense RNAs in other plasmids further indicate that similar binding pathways are used to form the inhibitory antisense-target RNA complexes. Thus, in all these systems, the structural features of both antisense and target RNAs determine the topologically possible and kinetically favored pathway that is essential for efficient in vivo control.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号