首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the discovery of two sympatric new species of Enyalioides from a montane rainforest of the Río Huallaga basin in northeastern Peru. Among other characters, the first new species is distinguishable from other Enyalioides by the combination of the following characters: strongly keeled ventral scales, more than 37 longitudinal rows of dorsals in a transverse line between the dorsolateral crests at midbody, low vertebral crest on the neck with vertebrals on neck similar in size to those between hind limbs, projecting scales on body or limbs absent, 96 mm maximum SVL in both sexes, and caudals increasing in size posteriorly within each autotomic segment. The second new species differs from other species of Enyalioides in having strongly keeled ventral scales, scales posterior to the superciliaries forming a longitudinal row of strongly projecting scales across the lateral edge of the skull roof in adults of both sexes, 31 or fewer longitudinal rows of strongly keeled dorsals in a transverse line between the dorsolateral crests at midbody, vertebrals on neck more than five times the size of vertebrals between hind limbs in adult males, projecting scales on body or limbs absent, and caudals increasing in size posteriorly within each autotomic segment. We also present an updated molecular phylogenetic tree of hoplocercines including new samples of Enyalioides rudolfarndti, Enyalioides rubrigularis, both species described in this paper, as well as an updated identification key for species of Hoplocercinae.  相似文献   

2.
With 61 species occurring mostly in the Andes and adjacent lowland areas, Stenocercus lizards represent one of the most widespread and well-represented Andean vertebrate groups. Phylogenetic relationships among species of Stenocercus are inferred using different datasets based on mitochondrial DNA sequence data of 35 species and morphological data of 59 species. Among morphological data, polymorphic and meristic/morphometric characters are coded under the frequency parsimony and gap-weighting methods, respectively, and the accuracy of these methods is tested. When both types of characters are included, the resulting tree topology is more similar to the topologies obtained from analyses of DNA sequence data than those topologies obtained after exclusion of one or both types of characters. The phylogenetic hypotheses inferred including 59 species of Stenocercus (dataset 1) and excluding those species for which DNA data were not available (dataset 2) are generally congruent with each other, as well as with previously published hypotheses. The most parsimonious tree obtained from analysis of dataset 2 is used in a dispersal-vicariance analysis to infer ancestral areas and major biogeographical events. Species of Stenocercus are divided into two major clades. Clade A has diversified mostly in the central Andes, with a few species in the northern Andes and one species in the southern Andes. Clade B is more widespread, with species in the northern, central, and southern Andes, as well as in the Atlantic lowlands and Amazon basin. The most recent common ancestor of Stenocercus is inferred to have occurred in the eastern cordillera of the central Andes. Given morphological similarity and altitudinal distribution of some species nested in a northern-Andes clade, as well as the relatively recent uplift of this Andean region, it is possible that species in this clade have diverged as recently as the mid-Pliocene.  相似文献   

3.
Phylogenetic relationships within the iguanid lizard genus Liolaemus are investigated using 1710 aligned base positions (785 phylogenetically informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COL Sixty new sequences ranging in length from 1736 to 1754 bases are compared with four previously reported sequences. Liolaemus species form two well-supported monophyletic groups of subgeneric status, Liolaemus and Eulaemus. These subgenera appear to have separated at least 12.6 million years ago based on the amount of molecular evolutionary divergence between them. Hypotheses that species occurring in the Andes, west of the Andes, and east of the Andes, each comprise distinct monophyletic groups are independently rejected statistically. The shortest estimate of phylogeny suggests mat Liolaemus originated either in the Andes or the eastern lowlands. Numerous evolutionary shifts have occurred between the Andes, and the eastern and western lowlands, suggesting recurring vicariance and dispersal. Species occurring at high elevations or high latitudes usually have viviparous reproduction. Depending on whether parity mode is considered reversible in Liolaemus , the most parsimonious reconstruction supports at least six independent origins of viviparity or at least three gains followed by three losses of viviparity among die 60 Liolaemus lineages examined.  相似文献   

4.
Molecular phylogenetic analyses were conducted using the whole mitochondrial genome sequences of all 18 species/subspecies of the freshwater eels genus Anguilla to infer their phylogenetic relationships and to evaluate hypotheses about the possible dispersal routes of this genus. The Bayesian and maximum likelihood analyses using a total of 15,187 sites of mitochondrial DNA sequences suggested that A. mossambica was the most basal species of anguillid eel, and that the other species (except for A. borneensis) formed three geographic clades: Atlantic (two species), Oceania (three species), and Indo-Pacific (11 species). The present study clearly indicated a sister relationship between the Atlantic and Oceanian species, which now have distantly separated geographic distributions. This suggests that the previous hypotheses to estimate the dispersal route of anguillid eels into the Atlantic Ocean based on the current geographic distribution of species are unsupported by the present more complete analysis. Alternatively, the unique geographic distribution of the present day species in the genus Anguilla appears to have resulted from multiple dispersal events. Although the age of the beginning of speciation among anguillid eels was tentatively estimated as 20 million years ago using a calibration for bony fishes of 7.3x10(-4) substitutions/site/million years, it is possible that this divergence time was underestimated because of the ecological characteristics of these fishes. The results of the present study suggest that the hypotheses for the dispersal route and divergence time of the genus Anguilla should be reconsidered.  相似文献   

5.
Studies of South American biodiversity have identified several areas of endemism that may have enhanced historical diversification of South American organisms. Hypotheses concerning the derivation of birds in the Chocó area of endemism in northwestern South America were evaluated using protein electrophoretic data from 14 taxonomically diverse species groups of birds. Nine of these groups demonstrated that the Chocó area of endemism has a closer historical relationship to Central America than to Amazonia, a result that is consistent with phytogeographic evidence. Within species groups, genetic distances between cis-Andean (east of the Andes) and trans-Andean (west of the Andes) taxa are, on average, roughly twice that between Chocó and Central American taxa. The genetic data are consistent with the hypotheses that the divergence of most cis-Andean and trans-Andean taxa was the result of either the Andean uplift fragmenting a once continuous Amazonian-Pacific population (Andean Uplift Hypothesis), the isolation of the two faunas in forest refugia on opposite sides of the Andes during arid climates (Forest Refugia Hypothesis), or dispersal of Amazonian forms directly across the Andes into the trans-Andean region (Across-Andes Dispersal Hypothesis). Disentangling these hypotheses is difficult due to the complexity of the Andean uplift and to the scant geologic and paleoclimatic information that elucidates diversification events in northwestern South America. Regarding the divergence of cis- and trans-Andean taxa, the genetic, geologic, and paleoclimatic data allow weak rejection of the Andean Uplift Hypothesis and weak support for the Forest Refugia and Andean Dispersal Hypotheses. The subsequent diversification of Chocó and Central American taxa was the result of Pleistocene forest refugia, marine transgressions, or parapatric speciation.  相似文献   

6.
We study the phylogenetic relationships among some North American Colias ("sulfur") butterflies, using mitochondrial gene sequences (ribosomal RNA, cytochrome oxidase I+II) totaling about 20% of the mitochondrial genome. We find that (1) the lowland species complex shows a branching order different from earlier views; (2) several montane and northern taxa may be more distinct than in earlier views; (3) one morphologically conservative Holarctic assemblage, C. hecla, is differentiated at the molecular-genetic level into at least three taxa which occupy distinct positions in the phylogeny and are sisters to diverse other taxa. These conclusions, constituting phylogenetic hypotheses, are supported by parsimony, maximum-likelihood, and Bayesian reconstruction algorithms. They are tested formally, by interior branch tests and paired-site tests, against alternative hypotheses derived from conventional species and subspecies naming combinations. In all cases our hypotheses are supported by these tests and the conventional alternatives are rejected. The "barcoding" subset of cytochrome oxidase I sequence identifies only some of the taxa supported by our full data set. Comparison of genetic divergence values among Colias taxa with those among related Pierid butterflies suggests that species radiations within Colias are comparatively younger. This emerging Colias phylogeny facilitates comparisons of genetic polymorphism and other adaptive mechanisms among taxa, thereby connecting micro- and macro-evolutionary processes.  相似文献   

7.
Amazonia is famous for high biodiversity, and the highlands of the transition zone between the Andes and the lowlands of the Amazon basin show particularly high species diversity. Hypotheses proposed to explain the high levels of diversity in the highlands include repeated parapatric speciation across ecological gradients spanning the transition zone, repeated allopatric speciation across geographic barriers between the highlands and lowlands, divergence across geographic barriers within the transition zone, and simple lineage accumulation over long periods of time. In this study, we investigated patterns of divergence in frogs of the genus Epipedobates (family Dendrobatidae) using phylogenetic and biogeographic analyses of divergence in mitochondrial DNA (1778 aligned positions from genes encoding cyt b, 12S and 16S rRNA for 60 Epipedobates and 11 outgroup specimens) and coloration (measured for 18 specimens representing nine species in Epipedobates). The majority of phenotypic and species diversity in the poison frog genus Epipedobates occurs in the transition zone, although two morphologically conserved members of the genus are distributed across the lowlands of the Amazon basin. Phylogenetic analysis reveals that there is a single highland clade derived from an ancestral colonization event in northern Peru by a population of lowland ancestry. Epipedobates trivittatus, a widespread Amazonian species, is a member of the highland clade that reinvaded the lowlands. Comparative analyses of divergence in coloration and mtDNA reveals that divergence in coloration among populations and species in the highlands has been accelerated relative to the lowlands. This suggests a role for selection in the divergence of coloration among populations and species.  相似文献   

8.
There are 14 species of marmots distributed across the Holarctic, and despite extensive systematic study, their phylogenetic relationships remain largely unresolved. In particular, comprehensive studies have been lacking. A well-supported phylogeny is needed to place the numerous ecological and behavioral studies on marmots in an evolutionary context. To address this situation, we obtained complete cytochrome (cyt) b sequences for 13 of the species and a partial sequence for the 14th. We applied a statistical approach to both phylogeny estimation and hypothesis testing, using parsimony and maximum likelihood-based methods. We conducted statistical tests on a suite of previously proposed hypotheses of phylogenetic relationships and biogeographic histories. The cyt b data strongly support the monophyly of Marmota and a western montane clade in the Nearctic. Although some other scenarios cannot be rejected, the results are consistent with an initial diversification in North America, followed by an invasion and subsequent rapid diversification in the Palearctic. These analyses reject the two major competing hypotheses of M. broweri's phylogenetic relationships--namely, that it is the sister species to M. camtschatica of eastern Siberia, and that it is related closely to M. caligata of the Nearctic. The Alaskan distribution of M. broweri is best explained as a reinvasion from the Palearctic, but a Nearctic origin can not be rejected. Several other conventionally recognized species groups can also be rejected. Social evolution has been homoplastic, with large colonial systems evolving in two groups convergently. The cyt b data do not provide unambiguous resolution of several basal nodes in the Palearctic radiation, leaving some aspects of pelage and karyotypic evolution equivocal.  相似文献   

9.
We compiled a large database of 58 059 point locality records for 70 species and 434 subspecies of heliconiine butterflies and used these data to test evolutionary hypotheses for their diversification. To study geographical patterns of diversity and contact zones, we mapped: (1) species richness; (2) mean molecular phylogenetic terminal branch length; (3) subspecies richness and the proportion of specimens that were subspecific hybrids, and (4) museum sampling effort. Heliconiine species richness is high throughout the Amazon region and peaks near the equator in the foothills and middle elevations of the eastern Andes. Mean phylogenetic terminal branch length is lowest in the eastern Andes and tends to be low in species‐rich areas. By contrast, areas of high subspecies richness, where subspecies overlap in range and/or hybridize, are concentrated along the course of the Amazon River, with the eastern Andes slopes and foothills relatively depauperate in terms of local intraspecific phenotypic diversity. Spatial gradients in heliconiine species richness in the Neotropics are consistent with the hypothesis that species richness gradients are driven at least in part by variation in speciation and/or extinction rates, resulting in observed gradients in mean phylogenetic branch length, rather than via evolutionary age or niche conservatism alone. The data obtained in the present study, coupled with individual case studies of recently evolved Heliconius species, suggest that the radiation of heliconiine butterflies occurred predominantly on the eastern slopes of the Andes in Colombia, Ecuador, and Peru, as well as in the upper/middle Amazon basin. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 479–497.  相似文献   

10.
Leptodactylus fuscus is a neotropical frog ranging from Panamá to Argentina, to the east of the Andes mountains, and also inhabiting Margarita, Trinidad, and the Tobago islands. We performed phylogenetic analyses of 12S rRNA, 16S rRNA, tRNA-Leu, and ND1 mitochondrial (mt) DNA sequences from specimens collected across the geographic distribution of L. fuscus to examine two alternative hypotheses: (i) L. fuscus is a single, widely distributed species, or (ii) L. fuscus is a species complex. We tested statistically for geographic association and partitioning of genetic variation among mtDNA clades. The mtDNA data supported the hypothesis of several cryptic species within L. fuscus. Unlinked mtDNA and nuclear markers supported independently the distinctness of a 'northern' phylogenetic unit. In addition, the mtDNA data divided the southern populations into two clades that showed no sister relationship to each other, consistent with high differentiation and lack of gene flow among southern populations as suggested by allozyme data. Concordance between mtDNA and allozyme patterns suggests that cryptic speciation has occurred in L. fuscus without morphological or call differentiation. This study illustrates a case in which lineage splitting during the speciation process took place without divergence in reproductive isolation mechanisms (e.g. advertisement call in frogs), contrary to expectations predicted using a biological species framework.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 325–341. No claim to original US government works.  相似文献   

11.
Although resolving phylogenetic relationships and establishing species limits are primary goals of systematics, these tasks remain challenging at both conceptual and analytical levels. Here, we integrated genomic and phenotypic data and employed a comprehensive suite of coalescent‐based analyses to develop and evaluate competing phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers (Chorthippus binotatus group) composed of two species and eight putative subspecies. To resolve the evolutionary relationships within this complex, we first evaluated alternative phylogenetic hypotheses arising from multiple schemes of genomic data processing and contrasted genetic‐based inferences with different sources of phenotypic information. Second, we examined the importance of number of loci, demographic priors, number and kind of phenotypic characters and sex‐based trait variation for developing alternative species delimitation hypotheses. The best‐supported topology was largely compatible with phenotypic data and showed the presence of two clades corresponding to the nominative species groups, one including three well‐resolved lineages and the other comprising a four‐lineage polytomy and a well‐differentiated sister taxon. Integrative species delimitation analyses indicated that the number of employed loci had little impact on the obtained inferences but revealed the higher power provided by an increasing number of phenotypic characters and the usefulness of assessing their phylogenetic information content and differences between sexes in among‐taxa trait variation. Overall, our study highlights the importance of integrating multiple sources of information to test competing phylogenetic hypotheses and elucidate the evolutionary history of species complexes representing early stages of divergence where conflicting inferences are more prone to appear.  相似文献   

12.
Vallinoto, M., Sequeira, F., Sodré, D., Bernardi, J. A. R., Sampaio, I. & Schneider, H. (2009). Phylogeny and biogeography of the Rhinella marina species complex (Amphibia, Bufonidae) revisited: implications for Neotropical diversification hypotheses. —Zoologica Scripta, 39, 128–140. A number of distinct hypotheses have been proposed to account for the origin of the considerable biological diversity found in the Neotropics, which is still a matter of intense debate. Here, we conducted a phylogenetic analysis of the Rhinella marina complex, a group of species widely distributed in Central and South America, combining published data with new sequences of three mtDNA genes (12S, 16S and cyt b) in order to clarify the evolutionary relationships and biogeographical history of the group. We included eight of the ten currently recognized R. marina group species and several outgroups. Maximum parsimony, maximum likelihood, and Bayesian inference analyses produced similar topologies, with two well‐supported main clades, each characterized by a deep subdivision. One of these major clades includes the samples of R. marina from Central America and Ecuador (west of the Andes), whereas the other comprises the remaining species of the group and samples of R. marina from the Amazon basin and other areas east of the Andes. A Bayesian coalescent‐based method (BEAST) dated the divergence between the two major clades, and between the Central American and Ecuadorian clades to the Miocene, matching the timing of other Central‐South American faunal divergences. Taken together, the results highlight the importance of Tertiary events such as the Pebas/marine incursions into the Amazon basin and Andean uplift for the diversification and historical biogeography of R. marina, making such taxa paraphyletic, and provide new perspectives on the debate on its species status.  相似文献   

13.
Although biodiversity gradients have been widely documented, the factors governing broad‐scale patterns in species richness are still a source of intense debate and interest in ecology, evolution, and conservation biology. Here, we tested whether spatial hypotheses (species–area effect, topographic heterogeneity, mid‐domain null model, and latitudinal effect) explain the pattern of diversity observed along the altitudinal gradient of Andean rain frogs of the genus Pristimantis. We compiled a gamma‐diversity database of 378 species of Pristimantis from the tropical Andes, specifically from Colombia to Bolivia, using records collected above 500 m.a.s.l. Analyses were performed at three spatial levels: Tropical Andes as a whole, split in its two main domains (Northern and Central Andes), and split in its 11 main mountain ranges. Species richness, area, and topographic heterogeneity were calculated for each 500‐m‐width elevational band. Spatial hypotheses were tested using linear regression models. We examined the fit of the observed diversity to the mid‐domain hypothesis using randomizations. The species richness of Pristimantis showed a hump‐shaped pattern across most of the altitudinal gradients of the Tropical Andes. There was high variability in the relationship between area and species richness along the Tropical Andes. Correcting for area effects had little impact in the shape of the empirical pattern of biodiversity curves. Mid‐domain models produced similar gradients in species richness relative to empirical gradients, but the fit varied among mountain ranges. The effect of topographic heterogeneity on species richness varied among mountain ranges. There was a significant negative relationship between latitude and species richness. Our findings suggest that spatial processes partially explain the richness patterns of Pristimantis frogs along the Tropical Andes. Explaining the current patterns of biodiversity in this hot spot may require further studies on other possible underlying mechanisms (e.g., historical, biotic, or climatic hypotheses) to elucidate the factors that limit the ranges of species along this elevational gradient.  相似文献   

14.
We developed an approach that combines distribution data, environmental geographic information system layers, environmental niche models, and phylogenetic information to investigate speciation processes. We used Ecuadorian frogs of the family Dendrobatidae to illustrate our methodology. For dendrobatids there are several cases for which there is significant environmental divergence for allopatric and parapatric lineages. The consistent pattern that many related taxa or nodes exist in distinct environmental space reinforces Lynch and Duellman's hypothesis that differential selection likely played an important role in species differentiation of frogs in the Andes. There is also some evidence that the Río Esmeraldas basin is a geographic barrier to species distributed in low to middle elevations on the western side of the Andes. Another useful aspect of this approach is that it can point to common environmental parameters that correlate with speciation. For dendrobatids, sister clades generally segregate along temperature/elevational and/or seasonality axes. The joint analysis of environmental and geographic data for this group of dendrobatid frogs has identified potentially important speciation mechanisms and specific sister lineages that warrant intensive study to test hypotheses generated in this investigation. Further, the method outlined in this paper will be increasingly useful as knowledge of distribution and phylogeny of tropical species increases.  相似文献   

15.
The Andes constitute one of the main factors that have promoted diversification in the Neotropics. However, the role of other highland regions in the southern cone of South America has been barely studied. We analyzed the level of endemism in the avifauna of the Central Sierras in Córdoba, a high region in central Argentina, to evaluate the effect of its geographic isolation from the Andes. There are 11 species with endemic subspecies in this region, all of them described based only on differences in morphology (mainly plumage color) with no genetic evidence. We performed the first genetic analyses of seven of these species using mitochondrial DNA obtained from fresh tissue and toe pad samples. Our results show that for three of these species, Catamenia inornata, Phrygilus unicolor and Cinclodes atacamensis, the population in the Central Sierras is clearly differentiated from those of other regions, and the first two of them also show divergence among Andean subspecies. In the remaining species we found a varying degree of differentiation, ranging from a small divergence in Muscisaxicola rufivertex to the presence of different haplotypes but with an apparent lack of phylogeographic structure in Phrygilus plebejus and Sturnella loyca (being the latter the only species with a continuous distribution between the Central Sierras and the Andes) to haplotype sharing in Asthenes modesta. While further analyses including additional markers, morphological characters and vocalizations are needed, our results show that some of the species that have disjunct distributions, with a population in the Central Sierras isolated geographically from the Andes, possess distinct genetic lineages in the Central Sierras that suggest an evolutionary isolation from other populations. These findings highlight the importance of montane regions in general, and the Central Sierras in particular, as drivers of diversification in the Neotropics.  相似文献   

16.
The nuclear ribosomal ITS region and the chloroplast trnL-trnF (trnLF) intergenic region were sequenced for 45 accessions of Paranephelius and six accessions of Pseudonoseris, the two genera of the subtribe Paranepheliinae (Liabeae, Asteraceae) distributed in the alpine regions of the Andes. This data set was used to estimate relationships between these genera and within each genus to aid in evaluating morphological variation and classification. Our results with both ITS and trnLF markers support the monophyly of subtribe Paranepheliinae, and place Pseudonoseris discolor as the first diverged taxon sister to the clade containing Paranephelius. Pseudonoseris szyszylowiczii exhibited intraspecific divergence supporting intergeneric hybridization between Pseudonoseris and Paranephelius. Within Paranephelius, genetic divergence is low and not adequate to fully resolve phylogenetic relationships at the species level, but two genetically and morphologically recognizable groups were revealed by the ITS data. Several accessions possessing multiple ITS sequences represent putative hybrids between the two groups. These putative hybrids have caused some taxonomic confusion and difficulties in establishing species boundaries in Paranephelius. The divergence time estimates based on ITS sequences indicated that the stem of subtribe Paranepheliinae dates to 13 million years ago, but the diversification of the crown clade of the extant members began in the early Pleistocene or late Pliocene, perhaps associated with the uplift of the Andes and the climatic changes of global cooling.  相似文献   

17.
The bee-eaters (family Meropidae) comprise a group of brightly colored, but morphologically homogeneous, birds with a wide variety of life history characteristics. A phylogeny of bee-eaters was reconstructed using nuclear and mitochondrial DNA sequence data from 23 of the 25 named bee-eater species. Analysis of the combined data set provided a well-supported phylogenetic hypothesis for the family. Nyctiornis is the sister taxon to all other bee-eaters. Within the genus Merops, we recovered two well-supported clades that can be broadly separated into two groups along geographic and ecological lines, one clade with mostly African resident species and the other clade containing a mixture of African and Asian taxa that are mostly migratory species. The clade containing resident African species can be further split into two groups along ecological lines by habitat preference into lowland forest specialists and montane forest and forest edge species. Intraspecific sampling in several of the taxa revealed moderate to high (3.7-6.5%, ND2) levels of divergence in the resident taxa, whereas the lone migratory taxon showed negligible levels of intraspecific divergence. This robust molecular phylogeny provides the phylogenetic framework for future comparative tests of hypotheses about the evolution of plumage patterns, sociality, migration, and delayed breeding strategies.  相似文献   

18.
We analyzed the avifaunas of the Caribbean islands and nearby continental areas and their relationships using Parsimony Analysis of Endemicity (PAE), in order to assess biogeographical patterns and their concordance with geological and phylogenetic evidence. Using distributional information of birds obtained from published literature, a presence/absence matrix for 695 genera and 2026 species of land and freshwater birds was constructed and analyzed. Three different analyses were performed: for species, for genera, and for species and genera combined. In the combined analysis, the Lesser Antilles appear paraphyletic at the base of the cladogram. Then, two major clades are identified: South America (Andes, Venezuelan lowlands, Dutch West Indies and Trinidad and Tobago) and North America, including the Greater Antilles in a clade that is the sister area to Yucatan and the Central American countries nested from north to south. PAE results support Caribbean vicariant models and cladistic biogeographical hypotheses on area relationships, and show relative congruence with available phylogenetic data. Bird biogeography on the Caribbean islands appears to have been caused by both vicariance and dispersal processes. © The Willi Hennig Society 2007.  相似文献   

19.
Progress in molecular techniques together with the incorporation of phylogenetic analyses of DNA into taxonomy have caused an increase in the number of species’ discoveries in groups with morphological characters that are difficult to study or in those containing polytypic species. But some emerged criticisms plead for a taxonomic conservatism grounded either on the requirement of providing evidences of morphological distinctiveness or reproductive barriers to erect new species names. In a case study of taxonomic research on Neotropical frogs, we combine several lines of evidence (morphological characters, prezygotic reproductive isolation and phylogenetic analyses of mitochondrial DNA) to test the status of 15 nominal species and to assess the degree of agreement of the different lines of evidence. Our study reveals that morphology alone is not sufficient to uncover all species, as there is no other single line of evidence independently. Full congruence between lines of evidence is restricted to only four out of the 15 species. Five species show congruence of two lines of evidence, whereas the remaining six are supported by only one. The use of divergence in morphological characters seems to be the most conservative approach to delineate species boundaries because it does not allow the identification of some sibling reciprocally monophyletic species differing in their advertisement calls. The separate analysis of differences in advertisement calls (evidence of reproductive isolation) or of phylogenetic data alone also shows limitations, because they do not support some morphological species. Our study shows that only an integrative approach combining all sources of evidence provides the necessary feedback to evaluate the taxonomic status of existing species and to detect putative new ones. Furthermore, the application of integrative taxonomy enables the identification of hypotheses about the existence of species that will probably be rejected or changed, and those that can be expected to persist.  相似文献   

20.
Neotropical diving beetles of the genus Platynectes are distributed across Central America, the Andes and different Precambrian shields in the Amazon Basin. Species from the northern Guiana Shield form a monophyletic clade, yet the phylogenetic relationships of the eastern Atlantic Shield species remain unknown. Here, we augmented an existing molecular dataset with a species from the Atlantic Shield that was not previously sampled. We reconstructed the phylogenetic relationships and estimated divergence times to understand the evolution of lineages dwelling in this region. The newly sampled specimens from the Atlantic Shield are recovered as sister taxa to Guiana Shield species. The dating analyses suggest a split between these two lineages in the late Oligocene to mid-Miocene, contemporary with the Miocenic geological remodeling of the Amazon Basin. Additional sampling in the Atlantic and Central Brazilian Shields will be determinant to test the monophyly of Platynectes species distributed in these ancient shields, and to fully understand the biogeographical history of diving beetles in the Amazon Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号