首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We attached 2-aminoethylamino groups to allophenylnorstatine-containing plasmepsin (Plm) inhibitors and investigated SAR of the methyl or ethyl substitutions on the amino groups. Unexpectedly, compounds 22 (KNI-10743) and 25 (KNI-10742) exhibited extremely potent Plm II inhibitory activities (Ki <0.1 nM). Moreover, among our peptidomimetic Plm inhibitors, we identified the compounds with the highest antimalarial activity using a SYBR Green I-based fluorescence assay.  相似文献   

2.
2-Aminoquinazolin-4(3H)-ones were previously discovered as perspective leads for antimalarial drug development targeting the plasmepsins. Here we report the lead optimization studies with the aim to reduce inhibitor lipophilicity and increase selectivity versus the human aspartic protease Cathepsin D. Exploiting the solvent exposed area of the enzyme provides an option to install polar groups (R1) the 5-position of 2-aminoquinazolin-4(3H)-one to inhibitors such as carboxylic acid without scarifying enzymatic potency. Moreover, introduction of R1 substituents increased selectivity factors of compounds in this series up to 100-fold for Plm II, IV vs CatD inhibition. The introduction of flap pocket substituent (R2) at 7-postion of 2-aminoquinazolin-4(3H)-one allows to remove Ph group from THF ring without notably impairing Plm inhibitory potency. Based on these findings, inhibitors were developed, which show Plm II and IV inhibitory potency in low nanomolar range and remarkable selectivity against Cathepsin D along with decreased lipophilicity and increased solubility.  相似文献   

3.
The plasmepsins are specific aspartic proteases of the malaria parasite and a potential target for developing new antimalarial agents. Our previously reported peptidomimetic plasmepsin inhibitor with modified 2-aminoethylamino substituent, KNI-10740, was tested against chloroquine sensitive Plasmodium falciparum, D6, to be highly potent, however, the inhibitor exhibited about 5 times less activity against multi-drug resistant parasite (TM91C235). We hypothesized the potency reduction resulted from structural similarity between 2-aminoethylamino substituent of KNI-10740 and chloroquine. Then, we modified the moiety and finally identified compound 15d (KNI-10823), that could avoid drug-resistant mechanism of TM91C235 strain.  相似文献   

4.
Based on a highly potent allophenylnorstatine-containing inhibitor, KNI-10006, against the plasmepsins of Plasmodium falciparum, we synthesized a series of tripeptide-type compounds with various N-terminal moieties and evaluated their inhibitory activities against plasmepsin II. Certain phenylacetyl derivatives exhibited extremely high affinity with K(i) values of less than 0.1n M suggesting successful hydrophobic interactions.  相似文献   

5.
We designed several HIV protease inhibitors with various d-cysteine derivatives as P(2)/P(3) moieties based on the structure of clinical drug candidate, KNI-764. Herein, we report their synthesis, HIV protease inhibitory activity, HIV IIIB cell inhibitory activity, cellular toxicity, and inhibitory activity against drug-resistant HIV strains. KNI-1931 showed distinct selectivity against HIV proteases and high potency against drug-resistant strains, surpassing those of Ritonavir and Nelfinavir.  相似文献   

6.
A series of malaria plasmepsin (Plm) I and II inhibitors containing a C(2)-symmetric core structure have been synthesised and tested for protease inhibition activity. These compounds can be prepared using a straightforward synthesis involving a phenol nucleophilic ring opening of a diepoxide. Exemplar compounds synthesised exhibited remarkable inhibitory activity against both Plm I and II, notably 15c with K(i) values of 2.7nM and 0.25nM respectively, as well as showing >100-fold selectivity against Cathepsin D.  相似文献   

7.
Plasmepsin (Plm) has been identified as an important target for the development of new antimalarial drugs, since its inhibition leads to the starvation of Plasmodium falciparum. A series of substrate-based dipeptide-type Plm II inhibitors containing the hydroxymethylcarbonyl isostere as a transition-state mimic were synthesized. The general design principle was provision of a conformationally restrained hydroxyl group (corresponding to the set residue at the P2' position in native substrates) and a bulky unit to fit the S2' pocket.  相似文献   

8.
The causative agent behind adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy is the human T-cell leukemia virus type 1 (HTLV-I). Tetrapeptidic HTLV-I protease inhibitors were designed on a previously reported potent inhibitor KNI-10516, with modifications at the P(3)-cap moieties. All the inhibitors showed high HIV-1 protease inhibitory activity (over 98% inhibition at 50nM) and most exhibited highly potent inhibition against HTLV-I protease (IC(50) values were less than 100nM).  相似文献   

9.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

10.
Fms-like tyrosine kinase 3 (FLT3) has been verified as a therapeutic target for acute myeloid leukaemia (AML). In this study, we report a series of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazol-5-yl benzamide and phenyl urea derivatives as potent FLT3 inhibitors based on the structural optimisation of previous FLT3 inhibitors. Derivatives were synthesised as benzamide 8a–k, 8n–z, and phenyl urea 8l–m, with various substituents. The most potent inhibitor, 8r, demonstrated strong inhibitory activity against FLT3 and FLT3 mutants with a nanomolar IC50 and high selectivity profiles over 42 protein kinases. In addition, these type II FLT3 inhibitors were more potent against FLT3 mutants correlated with drug resistance. Overall, we provide a theoretical basis for the structural optimisation of novel benzimidazole analogues to develop strong inhibitors against FLT3 mutants for AML therapeutics.  相似文献   

11.
Plasmepsin IV (Plm IV) is one of the aspartic proteases present in the food vacuole of the malaria parasite Plasmodium falciparum involved in host hemoglobin degradation by the parasite. Using a series of previously synthesized plasmepsin inhibitors [Ersmark, K., et al. (2005) J. Med. Chem. 48, 6090-106], we report here experimental data and theoretical analysis of their inhibitory activity toward Plm IV. All compounds share a 1,2-dihydroxyethylene unit as the transition state mimic. They possess symmetric P1 and P1' side chains and either a diacylhydrazine, a five-membered oxadiazole ring, or a retroamide at the P2 and P2' positions. Experimental binding affinities are compared to those predicted by the linear interaction energy (LIE) method and an empirical scoring function, using both a crystal structure and a homology model for the enzyme. Molecular dynamics (MD) simulations of the modeled complexes allow a rational interpretation of the structural determinants for inhibitor binding. A ligand bearing a P2 and P2' symmetric oxadiazole which is devoid of amide bonds is identified both experimentally and theoretically as the most potent inhibitor of Plm IV. For the P2 and P2' asymmetric compounds, the results are consistent with earlier predictions regarding the mode of binding of this class of inhibitors to Plm II. Theoretical estimation of selectivity for some compounds is also reported. Significant features of the Plm IV binding pocket are discussed in comparison to related enzymes, and the results obtained here should be helpful for further optimization of inhibitors.  相似文献   

12.
Histone deacetylase inhibitors have been proved to be great potential for the treatment of cancer. Recently, we designed and modified a series of substituted purine hydroxamate analogs as potent HDAC inhibitors based on our previous studies. The target compounds were investigated for their in vitro HDAC inhibitory activities and anti-proliferative activities. Results indicated that these compounds could effectively inhibit HDAC and possess obvious anti-proliferative activity against tumor cells. Promisingly, target compounds 4m and 4n outperformed SAHA in both enzymatic inhibitory activity and cellular anti-proliferative activity assay.  相似文献   

13.
The human T-cell leukemia virus type 1 (HTLV-I) causes adult T-cell leukemia and several severe chronic diseases. HTLV-I protease (PR) inhibition stops the propagation of the virus. Herein, truncation studies were performed on potent octapeptidic HTLV-I PR inhibitor KNI-10161 to derive small hexapeptide KNI-10127 with some loss in activity. After performing residue-substitution studies on compound KNI-10127, HTLV-I PR inhibitory activity was recovered in inhibitor KNI-10166.  相似文献   

14.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is currently an emerging target in pancreatic cancer. In this report, we describe a series of indolequinones, based on 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936), and evaluate NQO1 inhibition and growth inhibitory activity in the human pancreatic MIA PaCa-2 tumor cell line. The indolequinones with 4-nitrophenoxy, 4-pyridinyloxy, and acetoxy substituents at the (indol-3-yl)methyl position were NADH-dependent inhibitors of recombinant human NQO1, indicative of mechanism-based inhibition. However, those with hydroxy and phenoxy substituents were poor inhibitors of NQO1 enzyme activity, due to attenuated elimination of the leaving group. The ability of this series of indolequinones to inhibit recombinant human NQO1 correlated with NQO1 inhibition in MIA PaCa-2 cells. The examination of indolequinone interactions in complex with NQO1 from computational-based molecular docking simulations supported the observed biochemical data with respect to NQO1 inhibition. The design of both NQO1-inhibitory and noninhibitory indolequinone analogues allowed us to test the hypothesis that NQO1 inhibition was required for growth inhibitory activity in MIA PaCa-2 cells. ES936 and its 6-methoxy analogue were potent inhibitors of NQO1 activity and cell proliferation; however, the 4-pyridinyloxy and acetoxy compounds were also potent inhibitors of NQO1 activity but relatively poor inhibitors of cell proliferation. In addition, the phenoxy compounds, which were not inhibitors of NQO1 enzymatic activity, demonstrated potent growth inhibition. These data demonstrate that NQO1 inhibitory activity can be dissociated from growth inhibitory activity and suggest additional or alternative targets to NQO1 that are responsible for the growth inhibitory activity of this series of indolequinones in human pancreatic cancer.  相似文献   

15.
A series of 4-anilino-3-cyano-6,7-dialkoxyquinolines with different substituents attached to the 4-anilino group has been prepared that are potent MEK (MAP kinase kinase) inhibitors. The best activity is obtained when a phenyl or a thienyl group is attached to the para-position of the aniline through a hydrophobic linker, such as an oxygen, a sulfur, or a methylene group. The most active compounds show low nanomolar IC(50)'s against MEK (MAP kinase kinase), and have potent growth inhibitory activity in LoVo cells (human colon tumor line).  相似文献   

16.
Discovery of GR inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, the synthesis and GR inhibitory capacities of novel nitroaromatic compounds (NCs) (1-3) were reported. Some commercially available molecules were also tested for comparison reasons. The novel NCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low micromolar concentrations with K(i) values ranging from 0.211 to 4.57 μM as compared with well-known agents. Inhibition mechanism was assessed as being due to occlusion of the active site entrance by means of the NCs. Molecular docking results have shown that docking poses of ligands are able to construct binding interactions with the essential amino acids.  相似文献   

17.
Several members of a new family of non-sugar-type α-glycosidase inhibitors, bearing a 5-(p-toluenesulfonylamino)phthalimide moiety and various substituent at the N2 position, were synthesized and their activities were investigated. The newly synthesized compounds displayed different inhibition profile towards yeast α-glycosidase and rat intestinal α-glycosidase. Almost all the compounds had strong inhibitory activities against yeast α-glycosidase. Regarding rat intestinal α-glycosidase, only analogs with N2-aromatic substituents displayed varying degrees of inhibitory activities on rat intestinal maltase and lactase and nearly all compounds showed no inhibition against rat intestinal α-amylase. Structure–activity relationship studies indicated that 5-(p-toluenesulfonylamino)phthalimide moiety is a favorable scaffold to exert the α-glucosidase inhibitory activity and substituents at the N2 position have considerable influence on the efficacy of the inhibition activities.  相似文献   

18.
A set of bisphosphonate matrix metalloproteinase (MMP) inhibitors was investigated for inhibitory activity against several carbonic anhydrase (CA, EC 4.2.1.1) isozymes, some of which are overexpressed in hypoxic tumors. Some of the bisphosphonate revealed to be very potent inhibitors (in the low nanomolar range) of the cytosolic isoform CA II and the membrane-bound CA IX, XII and XIV isozymes, a feature useful for considering them as interesting compounds for bone resorption inhibition applications. We suggest here that it is possible to develop dual enzyme inhibitors bearing bisphosphonate moieties that may target both MMPs and CAs, two families of enzymes involved in tumor formation, growth, and metastasis.  相似文献   

19.
In the current study, two cyclic tripeptides respectively harboring a thiourea-type and a carboxamide-type of catalytic mechanism-based sirtuin inhibitory warheads as the central residue were found to behave as potent (low μM level) inhibitors against the tRNA-activated human SIRT7 deacetylase activity. Despite exhibiting a potent pan-inhibition against the deacylase activities of the five tested human sirtuins (i.e. SIRT1/2/3/6/7), these two compounds represent the first examples of potent SIRT7 inhibitors ever identified thus far, and their identification could facilitate the future development of more potent and selective SIRT7 inhibitors.  相似文献   

20.
As serine/threonine kinase, the cyclin dependent kinase 2 (CDK2) is a promising target for various diseases such as cerebral hypoxia, cancer, and neurodegenerative diseases. Here we reported the structure-based synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as CDK2 inhibitors, which exhibited potent CDK2 inhibitory activities, as well as anticancer activities in low concentration against two human cancer cell lines (MCF-7 and HCT116). In particular, compounds 11a and 11f (IC50 values of 0.11 and 0.09?μM for CDK2, respectively) have demonstrated significantly inhibitory potency against CDK2 and have showed great inhibitory activities against MCF-7 and HCT116 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号