首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Li T  Choi WG  Wallace IS  Baudry J  Roberts DM 《Biochemistry》2011,50(31):6633-6641
Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respectively, that participate in the transport of the critical cell wall nutrient boric acid. Modeling of the protein encoded by the AtNIP7;1 gene shows that it is a third member of the NIP II pore subclass in Arabidopsis. However, unlike AtNIP5;1 and AtNIP6;1 proteins, which form constitutive boric acid channels, AtNIP7;1 forms a channel with an extremely low intrinsic boric acid transport activity. Molecular modeling and molecular dynamics simulations of AtNIP7;1 suggest that a conserved tyrosine residue (Tyr81) located in transmembrane helix 2 adjacent to the aromatic arginine (ar/R) pore selectivity region stabilizes a closed pore conformation through interaction with the canonical Arg220 in ar/R region. Substitution of Tyr81 with a Cys residue, characteristic of established NIP boric acid channels, results in opening of the AtNIP7;1 pore that acquires a robust, transport activity for boric acid as well as other NIP II test solutes (glycerol and urea). Substitution of a Phe for Tyr81 also opens the channel, supporting the prediction from MD simulations that hydrogen bond interaction between the Tyr81 phenol group and the ar/R Arg may contribute to the stabilization of a closed pore state. Expression analyses show that AtNIP7;1 is selectively expressed in developing anther tissues of young floral buds of A. thaliana, principally in developing pollen grains of stage 9-11 anthers. Because boric acid is both an essential nutrient as well as a toxic compound at high concentrations, it is proposed that Tyr81 modulates transport and may provide an additional level of regulation for this transporter in male gametophyte development.  相似文献   

3.
4.
5.
6.
Summary The uptake of Mn and B by barley plants was studied in a 5-week period in growth chambers. Fluorescent light was provided with an intensity of 3200 foot-candles in a 12-hour day length and the entire plants were grown at temperatures of 10°, 15°, or 20°C. The root medium consisted of a base nutrient solution in which Mn or B was added in the following concentrations: 0, 0.1, 0.5, 2.0, and 5.0 ppm. Five plants were grown in volumes of 20 liters of solution. At the end of the growth period the shoots and roots were analyzed for Mn and B. The Mn content of the roots increased with temperature and with the Mn concentration of the external solution while the B content remained virtually static regardless of temperature or solution concentration. The shoots were divided into young, mature, and old leaves. The Mn and B content of the old leaves showed increases which varied both with temperature and concentration. Similar results were obtained with young and mature leaves. The failure of B to accumulate in the roots was discussed. It was suggested that boric acid, with a very low degree of dissociation, is present largely in a molecular form and does not participate in the customary metabolic activity connected with ion uptake and accumulation in roots.  相似文献   

7.
We investigated a nodulin 26-like protein NIP2;1, which belongs to the third subgroup of Arabidopsis aquaporins. Histochemical analysis of a promoter-beta-glucuronidase fusion revealed the root-specific expression of NIP2;1. The NIP2;1 protein was detected in young roots, but not in leaves, stems, flowers or siliques. The transient expression of NIP2;1 linked with green fluorescent protein in Arabidopsis cultured cells showed its putative endoplasmic reticulum (ER) localization. NIP2;1 expressed in yeast cells had low water channel activity in the membranes. NIP2;1 may function as a water channel and/or ER channel for other small molecules or ions.  相似文献   

8.
Boron transport mechanisms: collaboration of channels and transporters   总被引:3,自引:0,他引:3  
Boron (B) is an essential element for plants, but is also toxic when present in excess. B deficiency and toxicity are both major agricultural problems worldwide, and elucidating the molecular mechanisms of B transport should allow us to develop technology to alleviate B deficiency and toxicity problems. Recent milestones include the identification of a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, from Arabidopsis thaliana. Both proteins were shown to be required for plant growth under B limitation. In addition, BOR1 homologs are required for B homeostasis in mammalian cells and B-toxicity tolerance in yeast and plants. Here, we discuss how transgenic approaches show promise for generating crops that are tolerant of B deficiency and toxicity.  相似文献   

9.
10.
11.
12.
植物对硼元素的吸收转运机制   总被引:5,自引:0,他引:5  
硼是植物生长发育所必需的微量元素,但是在世界范围内,土壤中硼含量过高或者过低都会对植物生长产生影响,是农业生产上的主要问题.近来人们对硼的吸收转运机制的研究取得了突破性进展,鉴定了一些硼的转运通道和转运蛋白,例如:NIP5;1、NIP6;1、BOR1和BOR4,并对它们的转运机制有了一些了解.植物在硼缺少的情况下首先通过转运通道NIP5;1把硼吸收到共质体,然后通过转运蛋白BOR1运入中柱;在高硼毒害时,通过转运蛋白BOR4把过多的硼转出植物体,同时在植物中增加糖醇的含量,过表达BOR1或BOR4都能改变植物对硼含量变化的耐受性.因此,对植物中硼吸收转运机制的研究将有利于人们通过生物学手段提高作物对土壤中硼过高或过低的抗性.  相似文献   

13.
14.
Protein synthesis by ribosomes from the meristematic region of pea roots (0–0·3 cm) and 2-day-old corn shoots (young tissues) relative to ribosomes from matured regions of pea roots (2·0–2·5 cm) and 10-day-old corn leaves (aged tissues) was compared in the poly U-phenylalanine system. With normal polyribosome preparations, ribosomes from young tissues required approx. 16 mM Mg2+ while ribosomes from aged tissues required 20–22 mM Mg2+ for optimal activity. With monomeric ribosome preparations induced by anaerobic treatment of the seedlings, the Mg2+ optimum was 20–22 mM for ribosomes from both young and aged tissues. A higher level of peptidyl-tRNA in ribosomes from young tissues accounts, at least in part, for the differences in Mg2+ optima between ribosomes from young and aged tissues. Monomeric ribosomes were used for assaying the activity of ribosomes per se. Ribosomes from young pea root tips and ribosomes from 2-day-old corn shoots were 25–30% and 100–150% more active, respectively, than the corresponding ribosomes from aged tissues. Differences in ribosomal proteins revealed by gel electrophoresis correlated with the change in ribosomal activity. Reduced activity in the aged ribosomes was not due to RNase activity or inhibitors.  相似文献   

15.
Boron (B) is essential for vascular plants. Rapeseed (Brassica napus) is the second leading crop source for vegetable oil worldwide, but its production is critically dependent on B supplies. BnaA3.NIP5;1 was identified as a B-efficient candidate gene in B. napus in our previous QTL fine mapping. However, the molecular mechanism through which this gene improves low-B tolerance remains elusive. Here, we report genetic variation in BnaA3.NIP5;1 gene, which encodes a boric acid channel, is a key determinant of low-B tolerance in B. napus. Transgenic lines with increased BnaA3.NIP5;1 expression exhibited improved low-B tolerance in both the seedling and maturity stages. BnaA3.NIP5;1 is preferentially polar-localized in the distal plasma membrane of lateral root cap (LRC) cells and transports B into the root tips to promote root growth under B-deficiency conditions. Further analysis revealed that a CTTTC tandem repeat in the 5’UTR of BnaA3.NIP5;1 altered the expression level of the gene, which is tightly associated with plant growth and seed yield. Field tests with natural populations and near-isogenic lines (NILs) confirmed that the varieties carried BnaA3.NIP5;1Q allele significantly improved seed yield. Taken together, our results provide novel insights into the low-B tolerance of B. napus, and the elite allele of BnaA3.NIP5;1 could serve as a direct target for breeding low-B-tolerant cultivars.  相似文献   

16.
该研究采用毛白杨(Populus tomentosa)为试验材料,分析了温室条件下沙培幼苗对短期高硼胁迫(1、5、10 mmol/L硼酸)下的叶片生长、光合参数和硼转运蛋白的响应特征。结果显示:(1)与对照(0.05 mmol/L硼酸)相比,1 mmol/L硼酸处理导致毛白杨幼苗叶片叶绿素荧光参数上调,活性氧含量上升,树苗基部叶片出现少量黑色坏死斑;5 mmol/L硼酸胁迫下,叶片净光合速率、气孔导度和蒸腾速率下调,胞间二氧化碳浓度上升,叶绿素荧光参数和过氧化氢含量进一步上调,超氧阴离子含量较1 mmol/L硼酸胁迫时下调但仍然高于对照,除顶部叶片之外的其他叶片上出现大量坏死斑;10 mmol/L硼酸胁迫下,气体交换参数、叶绿素荧光参数和活性氧含量与5 mmol/L硼酸胁迫时相似,所有叶片均在平行于次级叶脉的方向出现呈带状分布的坏死斑。(2)毛白杨幼苗根和茎硼含量在硼胁迫条件下与对照相比变化幅度较小,而叶片硼含量在5 mmol/L和10 mmol/L硼酸胁迫下比对照显著上升,此时硼转移系数和生物富集系数均维持较高的水平。(3)硼转运蛋白(BOR)基因家族成员中PtoBOR4和PtoBOR8在根中的表达水平随着外界硼浓度的增加呈先上升后下降的趋势;在茎中,PtoBOR3基因下调表达,PtoBOR5上调表达;在叶片中,PtoBOR4表达先上升后下降,而PtoBOR7和PtoBOR8上调表达。研究表明,毛白杨幼苗叶片叶绿素荧光参数、活性氧、气体交换参数及硼转运蛋白基因家族表达对高硼胁迫较为敏感,硼胁迫症状在较短的时间内在叶片上以坏死斑的形式出现,可能与其较强的控制根系硼浓度的能力和向地上部分迅速运输硼的能力有关。  相似文献   

17.
Dioscorea remotiflora (Kunth) is an important wild plant that produces tuberous roots used as a source of food in the Western part of Mexico. Lack of planting material and inefficiency of traditional methods of propagation are the main constraints for implementing large-scale cultivation. In contrast, tissue culture techniques allow increasing multiplication and rapid production of plant material. In this regard, leaves or nodal segments were incubated on MS, B5 and WPM culture media with different PGRs in order to obtain an efficient micropropagation protocol. Leaves explants were unable to inducing shoots or callus. However, nodal segments produced axillary shoots and/or callus in all culture media. MS containing 2.33???M KIN was the most suitable to inducing shoots; an average of 6.6 shoots per segment for 100?% explants was obtained, which displayed also the greater number of nodes (5.0) and leaves (7.9) per segment. A decrease on shoot proliferation was observed combining BA or KIN with 2,4-D or NAA. However, small brownish callus were induced on 100?% of segments using 2.33???M KIN with 5.37???M 2,4-D or 9.30???M KIN plus 2.69???M NAA. In contrast, by adding 2.69???M NAA, 66.4?% of the nodal segments formed shoots and produced also yellowish friable callus on the base of the shoots. Shoots were easily rooted with 8.28???M IBA (96.9?%), displaying the greatest root and shoot biomass, but maximum number of tuberous roots, and root or tuberous root biomass was produced increasing IBA (20.7???M).  相似文献   

18.
19.
Jin  Yuhuan  Guo  Li  Liu  Danqing  Li  Yongguang  Ai  Hao  Huang  Xianzhong 《Plant Cell, Tissue and Organ Culture》2022,150(1):237-246

Arabidopsis pumila is a type of cruciferous ephemeral plant, which in China mainly grows in the desert environments of northern Xinjiang. A. pumila not only has a short growth duration, but also has high photosynthetic efficiency, seed yield, salt tolerance, and drought resistance. It is an ideal species for the study of environmental adaptations in ephemeral plants. We induced callus tissue formation on the roots and hypocotyls of 8-day-old seedlings, and on the leaves and petioles of 4-week-old seedlings, and obtained multiple adventitious shoots on these tissues grown on Murashige and Skoog induction medium supplemented with 0.5 mg/L 6-Benzylaminopurine and 0.1 mg/L α-Naphthalene acetic acid. Young roots, hypocotyls, leaves, and petioles could all induce calluses, but the induction rate was highest on young roots. In addition, the leaves and petioles of 4-week-old seedlings were used as explants, the Δ1-pyrroline-5-carboxylic acid synthase gene 1 of A. pumila controlled by 35S promoter of cauliflower mosaic virus was used as target gene, and hygromycin B was used as screening antibiotic to explore Agrobacterium tumefaciens GV3101 mediated transformation. The results showed that the callus induction rate of petiole explants was the highest when they were treated with Agrobacterium suspension (OD600?=?0.6) for 10 min and thenco-cultured in dark for 2 days. The qRT-PCR results showed that the ApP5CS1.1 gene was overexpressed in the transgenic plants. These protocols provide working research methods for exploring the cellular level adaptative mechanisms of this species to desert environments.

  相似文献   

20.
Distribution and partitioning of newly acquired boron (B) in a mature sunflower (Helianthus annuus L., cv. 3101) plant was investigated. In leaf blades of sunflower plants grown under 0.93, 2.8, and 9.3 mmol B m−3, the level of cell-wall-bound B was rather uniform, irrespective of leaf position and B concentration. Boron concentration gradients among leaf positions were produced mainly by different levels of water-soluble B. To determine the distribution of newly taken-up B in plant parts, 10B-labeled boric acid at a concentration of 2.8 mmol B m−3 was applied. The majority of newly acquired B was delivered to the younger leaves, however, approximately one-fourth of the B in the top and second leaves was the older B which was taken up before the 6 d treatment period. In the root tissues, two-fifth of the water-soluble B was new B taken up in the last 6 d, however, within 6 h of the application new B contributed to approximately 80% of the xylem sap B, suggesting that newly taken-up B is preferentially transported to the shoots. When B was withdrawn from the culture solution, the B concentration per leaf area of the lower leaves decreased slightly over 9 d. However, there was an abrupt decrease in the younger leaves, even when taking into account the rapid expansion of the leaf blade, suggesting that B moves more rapidly from the younger leaves than from the older leaves  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号