首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol to recover Bacillus anthracis spores from a steel surface using macrofoam swabs was evaluated for its accuracy, precision, reproducibility, and limit of detection. Macrofoam swabs recovered 31.7 to 49.1% of spores from 10-cm2 steel surfaces with a ≤32.7% coefficient of variation in sampling precision and reproducibility for inocula of ≥38 spores.  相似文献   

2.
Twelve Laboratory Response Network (LRN) affiliated laboratories participated in a validation study of a macrofoam swab protocol for the recovery, detection, and quantification of viable B. anthracis (BA) Sterne spores from steel surfaces. CDC personnel inoculated steel coupons (26 cm2) with 1-4 log10 BA spores and recovered them by sampling with pre-moistened macrofoam swabs. Phase 1 (P1) of the study evaluated swabs containing BA only, while dust and background organisms were added to swabs in Phase 2 (P2) to mimic environmental conditions. Laboratories processed swabs and enumerated spores by culturing eluted swab suspensions and counting colonies with morphology consistent with BA. Processed swabs were placed in enrichment broth, incubated 24 h, and cultured by streaking for isolation. Real-time PCR was performed on selected colonies from P2 samples to confirm the identity of BA. Mean percent recovery (%R) of spores from the surface ranged from 15.8 to 31.0% (P1) and from 27.9 to 55.0% (P2). The highest mean percent recovery was 31.0% (sd 10.9%) for P1 (4 log10 inoculum) and 55.0% (sd 27.6%) for P2 (1 log10 inoculum). The overall %R was higher for P2 (44.6%) than P1 (24.1%), but the overall reproducibility (between-lab variability) was lower in P2 than in P1 (25.0 vs 16.5%CV, respectively). The overall precision (within-lab variability) was close to identical for P1 and P2 (44.0 and 44.1, respectively), but varied greatly between inoculum levels. The protocol demonstrated linearity in %R over the three inoculum levels and is able to detect between 26 and 5 × 106 spores/26 cm2. Sensitivity as determined by culture was > 98.3% for both phases and all inocula, suggesting that the culture method maintains sensitivity in the presence of contaminants. The enrichment broth method alone was less sensitive for sampled swabs (66.4%) during P2, suggesting that the presence of background organisms inhibited growth or isolation of BA from the broth. The addition of real-time PCR testing to the assay increased specificity from > 85.4% to > 95.0% in P2. Although the precision was low at the 1 log10 inoculum level in both phases (59.0 and 50.2%), this swab processing protocol, was sensitive, specific, precise, and reproducible at 2-4 log10/26 cm2 spore concentrations.  相似文献   

3.
Evaluating different swabbing materials for spore recovery efficiency (RE) from steel surfaces, we recorded the maximum RE (71%) of 107 Bacillus subtilis spores with Tulips cotton buds, followed by Johnson''s cotton buds and standard Hi-Media cotton, polyester, nylon, and foam (23%) swabs. Among cotton swabs, instant water-absorbing capacity or the hydrophilicity index appeared to be the major indicator of RE, as determined by testing three more brands. Tulips swabs worked efficiently across diverse nonporous surfaces and on different Bacillus spp., registering 65 to 77% RE.  相似文献   

4.
Aim: To investigate the viability, surface characteristics and ability of spores of a Geobacillus sp. isolated from a milk powder production line to adhere to stainless steel surfaces before and after a caustic (NaOH) wash used in clean‐in‐place regimes. Methods and Results: Exposing sessile spores to 1% NaOH at 65°C for 30 min decreased spore viability by two orders of magnitude. The zeta potential of the caustic treated spores decreased from ?20 to ?32 mV and they became more hydrophobic. Transmission electron microscopy revealed that caustic treated spores contained breaks in their spore coat. Under flow conditions, caustic treated spores suspended in 0·1 mol l?1 KCl were shown to attach to stainless steel in significantly greater numbers (4·6 log10 CFU cm?2) than untreated spores (3·6 log10 CFU cm?2). Conclusions: This research suggests that spores surviving a caustic wash will have a greater propensity to attach to stainless steel surfaces. Significance of Study: The practice of recycling caustic wash solutions may increase the risk of contaminating dairy processing surfaces with spores.  相似文献   

5.
The dry-heat resistance of Bacillus subtilis var. niger spores located in or on various materials was determined as D and z values in the range of 105 through 160 C. The systems tested included spores located on steel and paper strips, spores located between stainless-steel washers mated together under 150 inch-lb and 12 inch-lb of torque, and spores encapsulated in methylmethacrylate and epoxy plastics. D values for a given temperature varied with the test system. High D values were observed for the systems in which spores were encapsulated or under heavy torque, whereas lower D values were observed for the steel and paper strip systems and the lightly torqued system. Similar z values were obtained for the plastic and steel strip systems (z(D) = 21 C), but an unusually low z for spores on paper (z(D) = 12.9 C) and an unusually high z for spores on steel washers mated at 150 inch-lb of torque (z(D) = 32 C) were observed. The effect of spore moisture content on the D value of spores encapsulated in water-impermeable plastic was determined, and maximal resistance was observed for spores with a water activity (a(w)) of 0.2 to 0.4. Significantly decreased D values were observed for spores with moisture contents below a(w) 0.2 or above a(w) 0.4. The data indicate that the important factors to be considered when measuring the dry heat resistance of spores are (i) the initial moisture content of the spore, (ii) the rate of spore desiccation during heating, (iii) the water retention capacity of the material in or on which spores are located, and (iv) the relative humidity of the system at the test temperature.  相似文献   

6.
A comparison of Most-Probable-Number Rapid Viability (MPN RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs from a multi-center validation study was performed. The purpose of the study was to compare environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were typically within 1-log of the values from a plate count method for all three levels of spores tested (3.1 × 104, 400, and 40 spores sampled from surfaces with swabs) even in the presence of debris. The MPN method tended to overestimate the expected result, especially at lower spore levels. Blind negative samples were correctly identified using both methods showing a lack of cross contamination. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols, enhancing its utility for characterization and clearance following a biothreat agent release.  相似文献   

7.
Clostridium difficile is the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student''s t test; P = 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species.  相似文献   

8.
The effectiveness of ultrasound and mechanical agitation for the recovery of Bacillus subtilis spores from pre-inoculated glass, polystyrene, polypropylene, polyethylene and polycarbonate surfaces was tested in the presence and absence of surfactant. Recovery from polymers was improved by the use of surfactant. Simple agitation, as frequently used in bioburden determination, is shown to be a poor method for the recovery of spores from hard surfaces. The use of ultrasound achieves recoveries over 90% only with glass, recoveries from polymers ranging from 40%–75%. Recoveries from polypropylene and polycarbonate showed poor reproducibilities. Agitation with Ballotini beads improved the reproducibility of recoveries from polymers and also in the majority of cases improved recovery levels.  相似文献   

9.
In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administration''s (NASA''s) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts.The recent discovery of liquid water on Mars has sparked debate about the possibility of extraterrestrial life (37). Consequently, highly sensitive biosensors will be deployed onboard spacecraft like the Mars Science Laboratory (MSL), using technologies such as gas chromatographical analysis to search for the smallest traces of life (http://mars.jpl.nasa.gov/msl/mission/). Contamination of equipment by terrestrial microorganisms resulting from a lack of spacecraft cleanliness could significantly compromise the integrity of life detection missions and result in falsely positive extraterrestrial life signals. The prevention of this so-called “forward contamination” is one major goal of American and European space agencies'' planetary-protection efforts. Regular determination of a spacecraft''s bioload and the mission components throughout assembly are mandatory for detecting unacceptably high contamination that exceeds levels set by the United Nations treaty (Outer Space Treaty [11]).Modern spacecraft hardware is very susceptible to standard heat sterilization protocols, so baking the entire spacecraft, such as the Viking Lander Capsule at 111.7°C ± 1.7°C for 23 to 30 h is no longer feasible (30). Alternative cleaning and sterilization methodologies for spacecraft components prior to assembly (i.e., nonthermal plasma technologies) have been discussed (36). However, after integration, sterile hardware is exposed to a significant risk of contamination during assembly, testing, and launching operations. Because of limited access to integrated spacecraft components, the microbial cleanliness of a spacecraft and its surroundings is meticulously maintained through frequent cleaning and sterilization routines. Therefore, the regular and frequent detection of possible contaminants in the assembly environment is more important than ever.To estimate the severity of microbial contamination, the National Aeronautics and Space Administration''s (NASA''s) standard procedure focuses on aerobic, mesophilic spores (26). Briefly, surface samples are taken from spacecraft using moist cotton swabs or wipes. After an extraction procedure, the samples are subjected to a short heat shock (15 min; 80°C) to kill vegetative cells and then pour plated in Trypticase soy agar (TSA) for the enumeration of CFU. This protocol was originally developed for the Viking mission more than 3 decades ago (30) and has remained, for the most part, unchanged.Recent studies have shown that cotton swabs have acceptable recovery efficiencies for Bacillus spores (41.7%) (32) but, due to their organic nature, may raise residue problems on surfaces. Furthermore, their comparatively high DNA content could lead to false positives or inhibition should NASA one day incorporate molecular technologies into their microbial-detection protocols (7).Based on these observations, researchers are beginning to move away from cotton in favor of alternative swabs made from rayon or macrofoam (6, 18). A recent study reported high recovery efficiencies for various vegetative cells from stainless steel surfaces by applying a novel swab with a bulb-shaped head flocked with nylon fibers (12). Patented in 2004, this design facilitates the release of particulates and microbes, resulting in a significantly higher detection rate. The broad applicability of these nylon-flocked swabs (NFS) has been demonstrated by their use in various clinical studies isolating pathogens from medical environments (1, 10, 20).General studies on surface-sampling tools have clearly shown that the swab material and the extraction method are the dominant factors in spore recovery efficiencies (32). Additionally, the properties of the surface to be sampled affect sample recovery (8). For planetary-protection applications, the broad variety of novel materials used in spacecraft construction must be considered. The Mars Exploration Rover mission craft, for example, was composed of at least five kinds of surface materials (http://marsrovers.jpl.nasa.gov/overview). While the cruise stage was constructed primarily of aluminum and the aeroshell consisted of aluminum honeycomb structures, the lander itself was made of titanium and graphite composite (carbon fiber-reinforced plastic [CFRP]). The airbag and the parachutes were made of Vectran and polyester/nylon fabrics. These different materials are quite challenging for sampling tools. Accurate sampling of materials with various surface textures will require planetary-protection programs to introduce novel swab materials.To our knowledge, no investigations have been performed to compare the recovery of spores from different spacecraft surfaces. Previous studies have compared cotton and synthetic sampling materials, but only on stainless steel surfaces (19), and no studies have compared sampling methods on actual spacecraft materials (7).Recently published protocols for spore detection have been based on one specific Bacillus species and/or on one type of surface. Unfortunately, these protocols provide no insight into the effects of varying these factors (4-6, 8, 9, 14, 18), as requested by USP (United States Pharmacopeia) 1223 for validation of alternative microbial methods (3). Some of the aforementioned studies were conducted in response to B. anthracis terrorism incidents in 2001 and used B. atrophaeus as a surrogate. Consequently, information about the actual sampling efficiency of B. anthracis spores is quite limited and may vary significantly from the B. atrophaeus data.In this comprehensive study, we evaluated the novel nylon-flocked swab and a corresponding protocol to recover Bacillus spores from five different spacecraft-related surfaces. It should be noted that although stainless steel served as the standard test surface, it is not a predominant material in spacecraft; however, since the majority of previous (sampling) studies were performed on stainless steel, it represents a universally recognized carrier and also serves as a conservative proxy for the average roughness of the materials used in space science.Our nylon-flocked-swab protocol was validated with respect to accuracy, precision, limit of detection, linearity, and robustness (3). Moreover, its specificity was determined by applying spores of seven different Bacillus species, including the avirulent, attenuated strain Bacillus anthracis Sterne, and by comparing the resulting recovery efficiencies. The results in this communication will significantly contribute to planetary-protection protocols and could also be of high interest for public health issues.  相似文献   

10.
Aim: We will validate sample collection methods for recovery of microbial evidence in the event of accidental or intentional release of biological agents into the environment. Methods and Results: We evaluated the sample recovery efficiencies of two collection methods – swabs and wipes – for both nonvirulent and virulent strains of Bacillus anthracis and Yersinia pestis from four types of nonporous surfaces: two hydrophilic surfaces, stainless steel and glass, and two hydrophobic surfaces, vinyl and plastic. Sample recovery was quantified using real‐time qPCR to assay for intact DNA signatures. We found no consistent difference in collection efficiency between swabs or wipes. Furthermore, collection efficiency was more surface‐dependent for virulent strains than nonvirulent strains. For the two nonvirulent strains, collection efficiency was similar between all four surfaces, albeit B. anthracis Sterne exhibited higher levels of recovery compared to Y. pestis A1122. In contrast, recovery of B. anthracis Ames spores and Y. pestis CO92 from the hydrophilic glass or stainless steel surfaces was generally more efficient compared to collection from the hydrophobic vinyl and plastic surfaces. Conclusions: Our results suggest that surface hydrophobicity may play a role in the strength of pathogen adhesion. The surface‐dependent collection efficiencies observed with the virulent strains may arise from strain‐specific expression of capsular material or other cell surface receptors that alter cell adhesion to specific surfaces. Significance and Impact of the Study: These findings contribute to the validation of standard bioforensics procedures and emphasize the importance of specific strain and surface interactions in pathogen detection.  相似文献   

11.
AIM: To evaluate US Centers for Disease Control and Prevention recommended swab surface sample collection method for recovery efficiency and limit of detection for powdered Bacillus spores from nonporous surfaces. METHODS AND RESULTS: Stainless steel and painted wallboard surface coupons were seeded with dry aerosolized Bacillus atrophaeus spores and surface concentrations determined. The observed mean rayon swab recovery efficiency from stainless steel was 0.41 with a standard deviation (SD) of +/-0.17 and for painted wallboard was 0.41 with an SD of +/-0.23. Evaluation of a sonication extraction method for the rayon swabs produced a mean extraction efficiency of 0.76 with an SD of +/-0.12. Swab recovery quantitative limits of detection were estimated at 25 colony forming units (CFU) per sample area for both stainless steel and painted wallboard. CONCLUSIONS: The swab sample collection method may be appropriate for small area sampling (10 -25 cm2) with a high agent concentration, but has limited value for large surface areas with a low agent concentration. The results of this study provide information necessary for the interpretation of swab environmental sample collection data, that is, positive swab samples are indicative of high surface concentrations and may imply a potential for exposure, whereas negative swab samples do not assure that organisms are absent from the surfaces sampled and may not assure the absence of the potential for exposure. SIGNIFICANCE AND IMPACT OF THE STUDY: It is critical from a public health perspective that the information obtained is accurate and reproducible. The consequence of an inappropriate public health response founded on information gathered using an ineffective or unreliable sample collection method has the potential for undesired social and economic impact.  相似文献   

12.
Inanimate surfaces are regarded as key vehicles for the spread of human norovirus during outbreaks. ISO method 15216 involves the use of cotton swabs for environmental sampling from food surfaces and fomites for the detection of norovirus genogroup I (GI) and GII. We evaluated the effects of the virus drying time (1, 8, 24, or 48 h), swab material (cotton, polyester, rayon, macrofoam, or an antistatic wipe), surface (stainless steel or a toilet seat), and area of the swabbed surface (25.8 cm2 to 645.0 cm2) on the recovery of human norovirus. Macrofoam swabs produced the highest rate of recovery of norovirus from surfaces as large as 645 cm2. The rates of recovery ranged from 2.2 to 36.0% for virus seeded on stainless-steel coupons (645.0 cm2) to 1.2 to 33.6% for toilet seat surfaces (700 cm2), with detection limits of 3.5 log10 and 4.0 log10 RNA copies. We used macrofoam swabs to collect environmental samples from several case cabins and common areas of a cruise ship where passengers had reported viral gastroenteritis symptoms. Seventeen (18.5%) of 92 samples tested positive for norovirus GII, and 4 samples could be sequenced and had identical GII.1 sequences. The viral loads of the swab samples from the cabins of the sick passengers ranged from 80 to 31,217 RNA copies, compared with 16 to 113 RNA copies for swab samples from public spaces. In conclusion, our swab protocol for norovirus may be a useful tool for outbreak investigations when no clinical samples are available to confirm the etiology.  相似文献   

13.
We developed and validated a real-time quantitative polymerase chain reaction (qPCR) assay to determine Mycoplasma genitalium bacterial load in endocervical swabs, based on amplification of the pdhD gene which encodes dihydrolipoamide dehydrogenase, using the Rotor-Gene platform. We first determined the qPCR assay sensitivity, limit of detection, reproducibility and specificity, and then determined the ability of the qPCR assay to quantify M. genitalium in stored endocervical specimens collected from Zimbabwean women participating in clinical research undertaken between 1999 and 2007. The qPCR assay had a detection limit of 300 genome copies/mL and demonstrated low intra- and inter-assay variability. The assay was specific for M. genitalium DNA and did not amplify the DNA from other mycoplasma and ureaplasma species. We quantified M. genitalium in 119 of 1600 endocervical swabs that tested positive for M. genitalium using the commercial Sacace M. genitalium real-time PCR, as well as 156 randomly selected swabs that were negative for M. genitalium by the same assay. The M. genitalium loads ranged between < 300 and 3,240,000 copies/mL. Overall, the qPCR assay demonstrated good range of detection, reproducibility and specificity and can be used for both qualitative and quantitative analyses of M. genitalium in endocervical specimens and potentially other genital specimens.  相似文献   

14.
To comprehensively assess microbial diversity and abundance via molecular-analysis-based methods, procedures for sample collection, processing, and analysis were evaluated in depth. A model microbial community (MMC) of known composition, representative of a typical low-biomass surface sample, was used to examine the effects of variables in sampling matrices, target cell density/molecule concentration, and cryogenic storage on the overall efficacy of the sampling regimen. The MMC used in this study comprised 11 distinct species of bacterial, archaeal, and fungal lineages associated with either spacecraft or clean-room surfaces. A known cellular density of MMC was deposited onto stainless steel coupons, and after drying, a variety of sampling devices were used to recover cells and biomolecules. The biomolecules and cells/spores recovered from each collection device were assessed by cultivable and microscopic enumeration, and quantitative and species-specific PCR assays. rRNA gene-based quantitative PCR analysis showed that cotton swabs were superior to nylon-flocked swabs for sampling of small surface areas, and for larger surfaces, biological sampling kits significantly outperformed polyester wipes. Species-specific PCR revealed differential recovery of certain species dependent upon the sampling device employed. The results of this study empower current and future molecular-analysis-based microbial sampling and processing methodologies.  相似文献   

15.
Ozone resistance of spores of 2 strains of Bacillus isolated from laboratory animals was examined. Each of 0.02 ml of phosphate-buffered saline at pH 7.0 containing 10(6) Bacillus spores was dropped onto sterilized filter strips, wood chip bedding, pellets of diet, cloth pieces and stainless steel plates. After drying at room temperature, the test materials were exposed to ozone gas of different concentrations at 90% RH. Exposure to 200ppm ozone for 6 hours was sufficient to kill spores in filter strips, but a little higher concentration or a little longer period of ozone fumigation was necessary for sterilization of wood chips, cotton cloth pieces and steel plates. The present results indicated that 600ppm ozone fumigation for 6 hours might be effective for routine sterilization of cages, wood bedding, working clothes and other materials used in laboratory animal facilities. However, exposure to ozone gas of 500 or 1,000 ppm for 6 hours or 200 ppm for 24 hours could not kill spores in pellets of diet, suggesting that dietary protein inhibited the bactericidal activity of ozone.  相似文献   

16.
The reproducibility and efficacy of a swab technique for milking equipment in normal use was studied. Reproducibility was satisfactory when swabbing was done by trained personnel. It was confirmed that swabs pick up only a proportion of the microorganisms present on a surface; this proportion varies with the consistency of the contaminating material, but not with the type of surface on which it occurs. It is concluded that swabs allow the estimation of the maximum ability of a surface to contaminate the milk.
Rigid smooth surfaces of the milking machine are recontaminated by microorganisms originating from joints and complex parts of the machine during rinsing after cleaning. A procedure to evaluate the efficacy of cleaning these surfaces is proposed.  相似文献   

17.
Statistical evaluations of samples obtained from a Burkard seven-day recording volumetric pollen/spore trap were performed to determine the precision of the sampling and analysis procedures. The reproducibility of co-located traps was also investigated. The results showed that pollen grain transect counting was not significantly different, while fungal spore counting produced statistically different results. There was no statistical difference in the number of pollen and fungal spores counted between the co-located samplers. Reasons for the differences in the fungal spore counts are presented.  相似文献   

18.
A multichannel micropipetter was developed capable of pipetting as little as 1 μl with a reproducibility of better than ±2% and an accuracy of ±0.5%. The micropipetter consists of a precision syringe to which 13 individually valved fluid channels are connected as a bundle of segments spreading out radially from the tip of the syringe to pinch valves and further to fluid interfaces consisting of steel tubing sections for uptake or dispensing of fluid. A stepping motor drives the piston of the measuring syringe by means of a precision screw. Motor and valves are under computer control. Low dead volume (internal volume, ca. 1 μl/channel; external volume, 0.3 μl/cm of tubing), and the absence of internal valving parts ensure low cross-conamination (ca. 0.1%). These features together with the versatility provided by the large number of independent channels and the automatic operation make the instrument suitable for pipetting multicomponent mixtures in the general biochemistry laboratory (for enzyme kinetics and complex reactions) as well as in specialized routine applications (clinical diagnostics and radioimmunoassay).  相似文献   

19.
The sporicidal efficacy of sodium hypochlorite and a combination of peracetic acid and hydrogen peroxide on Bacillus cereus spores isolated from the milk processing environment was examined using the European Suspension Test and by a surface disinfection test on stainless steel and rubber. The results of the laboratory tests were compared with field trials in a milking installation. In general, it was difficult to obtain consistent results, as the repeatability and reproducibility of the tests were found to vary according to the test strain, spore suspension preparation, disinfectant test solution, organic load, contact time and temperature. The sporulation medium used to obtain spores influenced the sporicidal effect considerably. To overcome this problem a standard method for preparation of spore suspensions should be prescribed. The various disinfectants were more effective in suspensions than on surfaces and in field trials. For the suspension tests SE values ranging from 1.0 to 3.0 were reached within 10 min at 50°C, depending on the disinfectant used. Sodium hypochlorite-based products were most effective. The activity on spores on surfaces and in field trials was limited. In surface tests reductions of 0.4–0.8 were observed within 10 min at 50°C depending on the type of surface. The SE values obtained for rubber were lower compared with stainless steel. The decrease in spore levels found in the milking installation was comparable with the surface experiments, i.e. 0.4–1.0. It is important to develop standard test procedures to assess the sporicidal efficacy of disinfectants used in food hygiene. Surface tests should be included to reflect the in-use conditions more closely and minimum standards should be determined for both suspension tests and surface tests.  相似文献   

20.
Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号