首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. In case of dryings, the hyporheic zone is one of the most important refugia for stream macroinvertebrate communities, including the few Odonata species living in these habitats, such as Cordulegaster species. There is no information on the desiccation resistance strategies and methods of any members of the genus, including Cordulegaster heros.
  2. We hypothesised that the larvae use burrowing behaviour to survive droughts. In this study, beyond recording the survival rates of the larvae, we tested the effects of the sediment particle size and the body size of the larvae on burrowing behaviour in a 3-week-long simulated drought experiment in an indoor artificial stream system.
  3. Eighty larvae were involved in the experiment, from which 60 were treated with drought, and 20 served as controls. Larvae were put into flowing water, into separate special compartments; 1 day later, the flow was ceased, and then, the water level was gradually decreased for 3 weeks.
  4. Approximately 15% of larvae could survive the 3 weeks of drying. The survival probability of drought-treated larvae was significantly increased if animals burrowed into the sediment. In addition, the survival probability was higher in case of fine substrate material. Size of the larvae only affected the depth of the burrowing, not the survival rate.
  5. However, two-thirds of the larvae did not dig into the sediment, which implies that surviving via burrowing is not the only mechanism of the species to withstand dry periods.
  相似文献   

2.
The functional role of burrowing bivalves in freshwater ecosystems   总被引:13,自引:0,他引:13  
1. Freshwater systems are losing biodiversity at a rapid rate, yet we know little about the functional role of most of this biodiversity. The ecosystem roles of freshwater burrowing bivalves have been particularly understudied. Here we summarize what is known about the functional role of burrowing bivalves in the orders Unionoida and Veneroida in lakes and streams globally. 2. Bivalves filter phytoplankton, bacteria and particulate organic matter from the water column. Corbicula and sphaeriids also remove organic matter from the sediment by deposit feeding, as may some unionids. Filtration rate varies with bivalve species and size, temperature, particle size and concentration, and flow regime. 3. Bivalves affect nutrient dynamics in freshwater systems, through excretion as well as biodeposition of faeces and pseudofaeces. Excretion rates are both size and species dependent, are influenced by reproductive stage, and vary greatly with temperature and food availability. 4. Bioturbation of sediments through bivalve movements increases sediment water and oxygen content and releases nutrients from the sediment to the water column. The physical presence of bivalve shells creates habitat for epiphytic and epizoic organisms, and stabilizes sediment and provides refugia for benthic fauna. Biodeposition of faeces and pseudofaeces can alter the composition of benthic communities. 5. There is conflicting evidence concerning the role of resource limitation in structuring bivalve communities. Control by bivalves of primary production is most likely when their biomass is large relative to the water volume and where hydrologic residence time is long. Future studies should consider exactly what bivalves feed upon, whether feeding varies seasonally and with habitat, and whether significant overlap in diet occurs. In particular, we need a clearer picture of the importance of suspension versus deposit feeding and the potential advantages and tradeoffs between these two feeding modes. 6. In North America, native burrowing bivalves (Unionidae) are declining at a catastrophic rate. This significant loss of benthic biomass, coupled with the invasion of an exotic burrowing bivalve (Corbicula), may result in large alterations of ecosystem processes and functions.  相似文献   

3.
Larval lampreys are thought to have a significant impact on freshwater ecosystems because of their high densities and broad distributions. However, the significance of their role in the stream ecosystem remains unclear. In general, it is reported that filter feeders alter their habitat conditions (oxygen, organic matter, and nutrients levels). We evaluated the impacts of two lamprey species larvae on the physical and geochemical factors in streambed by their burrowing and feeding behavior using in situ enclosures in a mountainous river located in northern Japan. During a 21-day field experiment, we found that the larvae treatments compared to the controls (no larvae) caused increased oxygen levels in the streambed, maintained the relative softness of the streambed and increased the FPOM abundance on the streambed surface. The substantial impact of the lamprey larvae on the physical and geochemical conditions in the streambed may be attributable to their burrowing and feeding behavior. Hence, our findings contribute to understanding the importance of the conservation and management of lamprey populations in order to maintain the freshwater ecosystem. Additional experiments using lamprey larvae are needed to reveal their impact on biotic factors (aquatic insects, algae, etc.) in and around the larval habitats.  相似文献   

4.
Gutiérrez JL  Iribarne OO 《Oecologia》2004,139(4):572-582
Habitat structure is often assumed to be a predictor of habitat function. However, habitat structure may be insufficient to predict the functional significance of a habitat if the level of resources in the habitat is a consequence of the interaction between the habitat structure and physical or biological factors. In this study, we investigated whether depressions in tidal flat sediments generated by stout razor clams, Tagelus plebeius, affect the spatial patterns of pit digging by deposit-feeding burrowing crabs, Chasmagnathus granulata. The pits dug by crabs while feeding overlapped with clam siphon holes at a frequency higher than expected at random, and measurements of pit-digging by crabs integrated over several days indicated a higher frequency of feeding in the sediment of depressions. The daily frequency of pit-digging by crabs in depressions was positively related to the organic matter content of their sediments, but was significantly higher than the frequency of pit-digging away from clam siphon holes only after events of high bedload sediment transport, when the organic matter in the sediments of these depressions peaked. This example demonstrates the conditional nature of the relationship between habitat structure and function by illustrating how a physical process—bedload sediment transport—may introduce variation in the function that depressions play as feeding sites for burrowing crabs. Published information suggests that such conditional responses of organisms to habitat structure: (1) occur in a variety of habitats; (2) involve a variety of structures either of biotic or abiotic origin; and (3) are the consequence of either physical or biological controls that vary in importance according to the general mechanism through which habitat structure affect resources. This broad experimental evidence suggests that the accuracy of predictive models linking habitat structure and function can be improved by incorporating a mechanistic perspective that allows recognition of the potential for conditional responses of organisms to habitat structure.  相似文献   

5.
A flood event in a river will redistribute the bed sediments and may bury benthic insect larvae. To test the responses of case-building caddis larvae under such circumstances, we buried fourth instar larvae of Potamophylax cingulatus (Limnephilidae) in sediment of various grain size diameters (<1, 1–4, 4–10, >10 mm) to a depth of 1 or 2 cm. Depth of burial significantly affected time taken to emerge, individuals buried to 2 cm requiring longer to emerge, particularly if buried in fine (<1 mm) or coarse (>10 mm) sediment. Two thirds of those buried 2 cm deep in fine sediment abandoned their cases before emerging, whereas very few of those buried in coarser sediments and none buried to 1 cm depth emerged without a case. Burial in fine sediment is detrimental to P. cingulatus individuals, to the extent that they will abandon their cases, increasing the risk of predation, in order to facilitate escape. The case mass probably acts as a physical impediment to movement in fine matter, particularly if the animals experience respiratory stress. In coarse sediment, weight of sediment particles may slow down emergence, but not to the extent that individuals resort to case abandonment.  相似文献   

6.
R. Dermott 《Hydrobiologia》1981,83(3):499-503
The effects of nymph size and temperature on the ingestion rate ofHexagenia limbata were investigated using14C labelled algae mixed into sediment. Ingestion rate increased with nymph length and temperature. Daily ingestion rates of large 19 mm nymphs burrowing in silt averaged 58 and 192% of the dry body weight at 16° and 21 °C, respectively. Ingestion of seston due to filter feeding in artificial burrows was insignificant compared to that ingested by burrowing nymphs.  相似文献   

7.
Summary Species of the amphipod genus Paraceradocus found near the Antarctic Peninsula were observed in aquaria. The animals live under stones in burrows in sediment which they excavate with their gnathopods. During burrowing the animal regularly turns backwards in a somersault-like movement. Paraceradocus feeds on detritus, which is manipulated by the gnathopods and the antennes. The gnathopods are also used for grooming. A dense brush of setae at the medial surface of the carpi of the gnathopods I is used to clean off fine particles from the antennes. These particles are transferred to the maxillipeds and are ingested. The rear appendages are mainly cleaned by the gnathopods II. Young animals sitting between the gnathopods of the adult participate in feeding.  相似文献   

8.
We investigated the distribution patterns of Rhyacophila larvae at 2 habitat scales in mountain streams in central Honshu. One was at a rapid glide within a stream reach and the other was in microvertical layers within each rapid and glide. Cobbles were predominant in rapids, whereas sand and gravels were predominant in glides. Mean sediment particle size was smaller in glides, but evenness of sediment size and porosity were greater. A total of 9 species of Rhyacophila larvae were collected from rapids. On the other hand, in glides, only 4 species, R. nipponica, R. shikotsuensis, R. kawamurae, and R. transquilla, were collected, but they were more abundant than in rapids. The larvae of R. transquilla were found mainly in upper layers of the stream bed, whereas the other 3 species, R. nipponica, R. shikotsuensis, and R. kawamurae, occurred both in upper and lower layers. The latter 3 species belong to R. nigrocephala species group, the larvae of which share several common morphological and behavioral characters adapted to hyporheic habitat, such as slender body shape and vermicular movement. It is suggested that higher porosity in glides provides more microhabitat for them, and small-sized sediment particles are appropriate for their burrowing and creeping movement in hyporheic habitat.  相似文献   

9.
Burrowing animals maintain contact with the water above the sediment by pumping water through a tube system and therefore measurements of water pumping rate of burrowing animals is of crucial importance for the study of many processes both within and above the sea floor. This review deals with the measuring of water pumping and the analysis of flow generated by burrowing deposit- and filter-feeding zoobenthos in order to determine the type of pump and mechanisms involved, flow rate, pump pressure, and pumping power. The practical use of fluid mechanical principles is examined, and it is stressed that not only the pump pressure that a burrowing animal can apply is of interest for assessing the energy cost of pumping, but also the distribution of excess pressure along its burrow is of importance for assessing the seepage flow of oxygen-rich water into the sediment surrounding the burrow because this bioirrigation exerts a considerable effect on the chemistry and microbiology of sediments. Dense populations of burrowing filter-feeding zoobenthos also interact with the water above the sediment interface and this is reflected in the development of phytoplankton concentration profiles above the filter-feeding animals. In stagnant situations the near-bottom water may be depleted of food particles, depending on the population filtration rate and the intensity of the biomixing induced by the filtering activity. But moderate currents and the biomixing can presumably generate enough turbulence to facilitate mixing of water layers at the sea bed with the layers above where food particle concentrations are relatively higher. Following a brief summary of types of burrowing benthic animals, common methods for measuring pumping rates are described along with examples. For estimating the required pump pressure, biofluid mechanical theory for flow in tube–pump systems is summarised (elaborated in Appendix A). Specific examples are given to illustrate general principles and to give an idea of typical values of flow rate, pressure drop and power involved. Finally, some flow effects generated by burrowing animals in and above the sediment are described.  相似文献   

10.
Fiddler crabs are key bioturbators on tidal flats. During their intense bioturbation process, they manipulate large amounts of sediment, altering the physical state of existing materials. We investigated whether different types of sediment bioturbation produced by fiddler crabs modulate meiofaunal assemblages and microphytobenthic content. We hypothesized that sedimentary structures produced by burrowing (the burrow itself and the excavation pellets) and feeding (feeding pellets) generate different microenvironments compared with areas without apparent signs of fiddler crab disturbance, affecting both meiofauna and microphytobenthos, independent of the sampling period. Our results indicate that the engineering effects of burrow construction and maintenance and the engineering effects of fiddler crab foraging modulate meiofaunal assemblages in different ways. Overall, meiofauna from burrows and excavation pellets was more abundant and diverse than at control sites, whereas feeding pellets contained poor meiofaunal assemblages. By contrast, only foraging effects were detected on microphytobenthos; independent of the sampling period, Chl a and phaeopigment content were higher in the feeding pellets, but similar among burrows, excavation pellets and control sites. The present study demonstrates that the different engineering effects of fiddler crabs are an important source of habitat heterogeneity and a structuring agent of meiofaunal assemblages on subtropical tidal flats.  相似文献   

11.
Sediment-reworking macrofauna can stimulate nitrification by increasing the O2 penetration into sediments or it can reduce nitrification by grazing on nitrifying bacteria. We investigated the influence of Chironomus riparius larvae (Insecta: Diptera) on the in situ activity, abundance, and distribution of NH4+-oxidizing (AOB) and NO2-oxidizing bacteria (NOB) in two freshwater sediments with microsensors and fluorescence in situ hybridization. In organic-poor sediment, nitrification activity was reduced by the presence of C. riparius larvae, whereas no such effect was detected in organic-rich sediment. We explain this difference with the variable larval burrowing and grazing behavior in the two sediment types: In organic-poor sediment larval activities were intense and evenly distributed across the whole sediment surface, whereas in organic-rich sediment larval activities were locally restricted to the microenvironment of animal burrows. Surprisingly, the animals did not cause any significant change of the abundance of AOB and NOB. This implies that the observed reduction of nitrification activity was not density-regulated, but rather was due to the lowered metabolic activity of the nitrifiers. Partial digestion and redeposition of particle-associated bacteria by C. riparius larvae are believed to have caused this loss of metabolic activity.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

12.
The oviposition patterns of adults and the movement and feeding patterns of larvae of Epilachna cucurbitae on two species of cucurbits, Cucurbita maxima cv Queensland Blue and C. pepo cv Blackjack, were studied in the field and laboratory. The physical and nutritional characteristics of host plant leaves of different ages were described. Younger leaves had higher nitrogen contents but were less abundant, smaller and had higher trichome densities than older leaves. The development of first instar larvae was delayed by the leaf hairs on young and mature pumpkin leaves which prevented larvae from reaching the leaf surface to feed First instal larvae developed more quickly on leaves rich in nitrogen. Neither the total developmental time of larvae nor the size of pupae was affected by leafage because larvae on poor quality leaves compensated by eating more. Female beetles oviposited on all but the youngest and oldest leaves of the host plant. The trichomes on young leaves prevented females from attaching eggs to the leaf surface. First instar larvae remained where they hatched, but older larvae were more mobile, Changing feeding sites frequently and moving progressively to younger, more nutritious leaves. Final instar larvae moved onto adjacent vegetation to pupate. The adaptive significance of these patterns is discussed in relation to the nutritional value, hairiness and abundance of host plant leaves of different ages and the physical limitations of different larval instars.  相似文献   

13.
The spatangoid echinoid Echinocardium cordatum possesses specialized penicillate podia that handle sediment particles during burrowing and feeding. Epidermal complexes, which occur on podial surfaces directly contacting the sediment, each comprise four cells: a non-ciliated secretory cell containing granules rich in mucopolysaccharides (NCS cell), a ciliated secretory cell containing granules of unknown composition (CS cell), and two ciliated non-secretory cells (CNS cells). The cilium of the CS cell is subcuticular whereas that of each CNS cell traverses the cuticle. We propose that these four cells constitute a sensory-secretory complex wherein the ciliated cells are sensory cells and the secretory cells function for adhesion and de-adhesion. More exactly, an NCS cell adhesive and a CS cell de-adhesive would be sequential and would be initiated by two successive stimulations transduced by cilia when the podium touches the sediment. Cilia that first contact the sediment are those protruding through the cuticle from the CNS cells. Their stimulation would result in the secretion of an adhesive material by the NCS cells. Subsequently, the subcuticular cilia of CS cells would be stimulated when the podial digitations closely squeeze the substrate, and this would induce the secretion of a de-adhesive. These two antagonistic secretions would allow the podium to pick up and discharge sediment repetitively during burrowing and feeding.  相似文献   

14.
Distribution patterns of Gomphus pulchellus larvae in different sediments with different density of prey organisms were studied in the field in a small gravel pit lake in the south of Germany. Larval burrowing behaviour at different temperatures as well as food preference, consumption rates and activity were studied in laboratory experiments. In the study lake G. pulchellus larvae lived exclusively in places where macrophytes were present and in fine sediments (mean grain size <3 mm) with detritus cover. There was a significant positive correlation between larval density and density of food organisms suggesting that abundance of food is one of the determinants of larval distribution. In late autumn larvae migrated to deeper places probably to survive the winter. Low temperatures simulated in laboratory experiments did not induce larvae to burrow deeper. Larvae were always found in a sediment depth of 0.59–0.74 cm. Experiments with mixed prey showed that G. pulchellus larvae preferred tubificid worms and chironomid larvae over gammarids and ephemerid larvae. However, chironomid larvae which stayed in their tubes had a higher survival rate than those outside of tubes. Single-prey experiments showed that G. pulchellus larvae can prey not only on benthic species but also on Daphnia from the open water. Functional-response experiments showed that one G. pulchellus larva consumes a maximum of 2 to 3 tubificid worms or chironomid larvae per day, which corresponds to a maximum biomass (freshweight) of 5 to 30 mg per day. Video recordings of activity showed that G. pulchellus larvae cover long distances of up to 52 m per night on the substrate surface and that activity on the substrate surface started after midnight and ceased before sunrise. Consumption of Zooplankton prey and high activity above the substrate is interpreted as an adaptation of G. pulchellus larvae to the life in still water habitats.  相似文献   

15.
Alterations of the burrowing behavior of two benthic invertebrates living in intertidal mudflats, the polychaete Nereis diversicolor and the bivalve Scrobicularia plana, were studied in individuals exposed to soluble copper. The design of the contamination procedure took into account the results assessing the influence of some natural factors potentially able to influence burrowing (artificial vs. natural sediment, lighting, size of the shell for bivalves). Animals were exposed for 4 d to concentrations ranging from 25 to 150 μ g Cu l? 1. At the end of exposure, the burrowing kinetics in clean sediment were determined after 1 and 2 d, then the animals were frozen until acetylcholinesterase (AChE) activity determination. Even at the lowest tested concentrations, copper caused hypoactivity in organisms belonging to both species studied. Behavioral impairments were not related to AChE activity inhibition. Metabolical or physiological disturbances could be the cause of these impairments. Concentrations affecting burrowing behavior were below those responsible for lethality in these species.  相似文献   

16.
Like in all poikilothermic animals, higher temperatures increase developmental rate and activity in Calliphora vicina larvae. We therefore could expect temperature to have a persistent effect on the output of the feeding and crawling central pattern generators (CPGs). When confronted with a steep temperature gradient, larvae show evasive behavior after touching the substrate with the cephalic sense organs. Beside this reflex behavior the terminal- and dorsal organ might also mediate long term CPG modulation. Both organs were thermally stimulated while their response was recorded from the maxillary- or antennal nerve. The terminal organ showed a tonic response characteristic while the dorsal organ was not sensitive to temperature. Thermal stimulation of the terminal organ did not affect the ongoing patterns of fictive feeding or crawling, recorded from the antennal- or abdominal nerve respectively. A selective increase of the central nervous system (CNS) temperature accelerated the motor patterns of both feeding and crawling. We propose that temperature affects centrally generated behavior via two pathways: short term changes like thermotaxis are mediated by the terminal organ, while long term adaptations like increased feeding rate are caused by temperature sensitive neurons in the CNS which were recently shown to exist in Drosophila larvae.  相似文献   

17.
Diel patterns in mobility and feeding behaviour of the larvae of the stream-dwelling trichopteran Sericostoma personatum larvae were investigated. Larvae fed at night on coarse particulate organic matter (CPOM) at the sediment surface. In the daytime they rested a few cm below the sediment surface, during which time their defaecation activity effected a release of fine particulate organic matter (FPOM) into the sediment. The amount of faeces (mean particle size = 0.1 ± 0.044 mm, x ± SD, n = 500) introduced into the sediment by the larvae, evaluated in two experiments, was 0.4–0.56 mg day–1. This amount did not differ significantly from the organic input resulting from bacterial activity (0.36–0.64 mg day–1). The presence of S. personatum larvae increased the sediment organic content by 42.9 mg (75.8 %) and 59.8 mg (185.6%) AFDW per 16 cm3 sediment over a 90-day period, as compared with control systems containing no larvae.  相似文献   

18.
《Biomarkers》2013,18(5):461-469
The influences of salinity and body size on biochemical (activities of glutathione-S-transferase, lactate dehydrogenase (LDH), acetylcholinesterase and digestive enzymes amylase and CMCase), physiological (feeding and egestion rates, energy reserves) and behavioural (burrowing speed) biomarkers were examined in the infaunal polychaete Nereis diversicolor. Only a few biomarkers were affected, including increased egestion rate and activities of CMCase and LDH at higher salinity, and higher egestion rate in larger worms. These findings reinforce the status of N. diversicolor as a robust sentinel species for estuaries which are environments that are particularly productive but also particularly at risk.  相似文献   

19.
Ontogenetic changes in resource use are widespread in many fish species. This study investigated the feeding habits of whitefish (C. lavaretus L.) larvae in Lake Annecy (France) coupled with experimental behavioral studies in order to identify the underlying mechanisms of the ontogenetic shifts in the diet. The predatory behavior of wild larvae, and the escape responses of their zooplankton prey were both videorecorded in experimental tanks under controlled laboratory conditions. Ontogenetic diet patterns showed that young whitefish larvae have a preference for small cyclops, while older larvae selectively predate cladocerans. Our experimental observations showed that the capture success rate also varied in relation to ontogenetic development in fish. Young larvae were more successful in capturing small copepods, whereas old larvae were more successful in capturing Daphnia. In addition, the larvae were able to adjust their predatory behavior (speed, pursuit) according to the swimming pattern of the prey. These observations suggest that the selective predation on cladocerans observed in old larvae is the outcome of both active and passive choices depending on the escape swimming behavior of the prey, and handling time of the predator.  相似文献   

20.
The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1–2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号