首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first phylogenetic analysis of DNA sequence data for the Central American component of the genus Eleutherodactylus (Anura: Leptodactylidae: Eleutherodactylinae), one of the most ubiquitous, diverse, and abundant components of the Neotropical amphibian fauna. We obtained DNA sequence data from 55 specimens representing 45 species. Sampling was focused on Central America, but also included Bolivia, Brazil, Jamaica, and the USA. We sequenced 1460 contiguous base pairs (bp) of the mitochondrial genome containing ND2 and five neighboring tRNA genes, plus 1300 bp of the c-myc nuclear gene. The resulting phylogenetic inferences were broadly concordant between data sets and among analytical methods. The subgenus Craugastor is monophyletic and its initial radiation was potentially rapid and adaptive. Within Craugastor, the earliest splits separate three northern Central American species groups, milesi, augusti, and alfredi, from a clade comprising the rest of Craugastor. Within the latter clade, the rhodopis group as formerly recognized comprises three deeply divergent clades that do not form a monophyletic group; we therefore restrict the content of the rhodopis group to one of two northern clades, and use new names for the other northern (mexicanus group) and one southern clade (bransfordii group). The new rhodopis and bransfordii groups together form the sister taxon to a clade comprising the biporcatus, fitzingeri, mexicanus, and rugulosus groups. We used a Bayesian MCMC approach together with geological and biogeographic assumptions to estimate divergence times from the combined DNA sequence data. Our results corroborated three independent dispersal events for the origins of Central American Eleutherodactylus: (1) an ancestor of Craugastor entered northern Central America from South American in the early Paleocene, (2) an ancestor of the subgenus Syrrhophus entered northern Central America from the Caribbean at the end of the Eocene, and (3) a wave of independent dispersal events from South America coincided with formation of the Isthmus of Panama during the Pliocene. We elevate the subgenus Craugastor to the genus rank.  相似文献   

2.
To test vicariant speciation hypotheses derived from geological evidence of the closing of the Tethys Sea, we reconstruct phylogenetic relationships of the predominantly fresh-water killifish genus Aphanius using 3263 aligned base pairs of mitochondrial DNA from samples representing 49 populations of 13 species. We use additional 11 cyprinodontid species as outgroup taxa. Genes analysed include those encoding the partial 12S and 16S ribosomal RNAs; transfer RNAs for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine and tyrosine; and complete nicotinamide adenine dinucleotide dehydrogenase subunit I and II. Molecular substitution rate for this DNA region is estimated at of 8.6 +/- 0.1 x 10(-9) substitutions base pair(-1) year(-1), and is derived from a well dated transgression of the Red Sea into the Wadi Sirhan of Jordan 13 million years ago; an alternate substitution rate of 1.1 +/- 0.2 x 10(-8) substitutions base pair(-1) year(-1) is estimated from fossil evidence. Aphanius forms two major clades which correspond to the former eastern and western Tethys Sea. Within the eastern clade Oligocene divergence into a fresh-water clade inhabiting the Arabian Peninsula and an euhaline clade inhabiting coastal area from Pakistan to Somalia is observed. Within the western Tethys Sea clade we observe a middle Oligocene divergence into Iberian Peninsula and Atlas Mountains, and Turkey and Iran sections. Within Turkey we observe a large amount of genetic differentiation correlated with late Miocene orogenic events. Based on concordance of patterns of phylogenetic relationships and area relationships derived from geological and fossil data, as well as temporal congruence of these patterns, we support a predominantly vicariant-based speciation hypothesis for the genus Aphanius. An exception to this pattern forms the main clade of A. fasciatus, an euhaline circum-Mediterranean species, which shows little genetic differentiation or population structuring, thus providing no support for the hypothesis of vicariant differentiation associated with the Messinian Salinity Crisis. The two phylogenetically deepest events were also likely driven by ecological changes associated with the closing of the Tethys Sea.  相似文献   

3.
Phylogenetic relationships within the family Rivulidae (order Cyprinodontiformes) are investigated using 1972 aligned base pairs of mitochondrial DNA (mtDNA) for samples representing 66 species. Genes analyzed include those encoding the 12S ribosomal RNA; transfer RNAs for valine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; complete NADH dehydrogenase subunit II; and part of cytochrome oxidase I. Parsimony analysis of the aligned mtDNA sequences results in a single most parsimonious tree. The phylogeny reveals two independent origins of developmental diapause within the family Rivulidae. It is unlikely that diapause evolved de novo in each group, suggesting that the presence or absence of diapause is the result of developmental switches between alternative stabilized pathways. Phylogeny of the family Rivulidae shows high concordance with predictions derived from the geological history of South America and Central America. Basal lineages in the rivulid phylogeny are distributed primarily on geologically old areas, whereas more nested lineages occur in geologically younger areas. However, there is little concordance between the molecular phylogeny and currently available morphological hypotheses and existing taxonomies. Based on the mtDNA phylogeny, the genera Pterolebias, Rivulus, Pituna, and Plesiolebias are considered nonmonophyletic and warrant taxonomic reassessment.  相似文献   

4.
Phylogenetic relationships of a subset of Aphanius fish comprising central Anatolia, Turkey, are investigated to test the hypothesis of geographic speciation driven by early Pliocene orogenic events in spite of morphological similarity. We use 3434 aligned base pairs of mitochondrial DNA from 42 samples representing 36 populations of three species and six outgroup species to test this hypothesis. Genes analyzed include those encoding the 12S and 16S ribosomal RNAs; transfer RNAs coding for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; and complete NADH dehydrogenase subunits I and II. Distance based minimum evolution and maximum-likelihood analyses identify six well-supported clades consisting of Aphanius danfordii, Aphanius sp. aff danfordii, and four clades of Aphanius anatoliae. Parsimony analysis results in 462 equally parsimonious trees, all of which contain the six well supported clades identified in the other analyses. Our phylogenetic results are supported by hybridization studies (Villwock, 1964), and by the geological history of Anatolia. Phylogenetic relationships among the six clades are only weakly supported, however, and differ among analytical methods. We therefore test and subsequently reject the hypothesis of simultaneous diversification among the six central Anatolian clades. However, our analyses do not identify any internodes that are significantly better supported than expected by chance alone. Therefore, although bifurcating branching order is hypothesized to underlie this radiation, the exact branching order is difficult to estimate with confidence.  相似文献   

5.
To gain insights into the relationships among anostracan families, molecular phylogenetic analyses were performed on nuclear (28S D1-D3 ribosomal DNA) and mitochondrial (16S rDNA, COI) gene regions for representatives of seven families and an outgroup. Data matrices used in the analyses included 951 base pairs (bp) of aligned sequences for 28S, 465 bp for 16S, and 658 bp (219 amino acids) for COI. Maximum-parsimony and maximum-likelihood methods were used to construct phylogenetic trees, enabling the evaluation of both previous hypotheses of taxonomic relationships among families based on morphology, and of the relative merits of independent versus simultaneous analyses of multiple data sets for phylogeny construction. Data from various combinations of the gene regions produced relatively congruent patterns of phylogenetic affinity. In most analyses, two monophyletic groups were resolved: one cluster included the families Polyartemiidae, Chirocephalidae, Branchinectidae, Streptocephalidae, and Thamnocephalidae, while the other contained the Artemiidae and Branchipodidae. Comparative analyses showed that combining gene regions in a single matrix generally resulted in increased resolution and support for each cluster relative to those obtained from single-gene analyses. Statistical tests demonstrated that morphology-based hypotheses of relationships among families had poorer support than those determined from molecular data, reflecting the homoplasy in characters used to differentiate families.  相似文献   

6.
We propose a phylogenetic hypothesis of relationships within Callandrena, a North American subgenus of the bee genus Andrena, based on both mitochondrial and nuclear DNA sequences. Our data included 695 aligned base pairs comprising parts of the mitochondrial genes cytochrome oxidase subunits I and II and the intervening tRNA-leucine and 767 aligned base pairs of the F2 copy of the nuclear gene elongation factor-1alpha. We also suggest a preliminary hypothesis of relationships of the North American subgenera in the genus. Our analyses included 54 species of Callandrena, 42 species of Andrena representing 24 additional subgenera, and 11 outgroup species in the family Andrenidae. Parsimony analyses of each marker separately suggested that Callandrena was polyphyletic, with a combined analysis suggesting that there were at least two phylogenetically independent clades of bees with similar morphological features. Maximum likelihood and Bayesian analyses supported this conclusion, as did the non-parametric bootstrapping SOWH test. Convergence in morphological characters was likely due to their common use of members of Asteraceae as pollen hosts.  相似文献   

7.
Varying morphological features in many groups of tropical vines confound identification, requiring molecular tools for distinguishing species. Confusion is amplified in Psiguria, a small genus found in Central and South America and the Caribbean, because male and female flowers of these monoecious plants are widely separated by time and position on a branch. We present the first phylogeny of Psiguria utilizing a combination of eight chloroplast intergenic spacers, the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA repeat, and the intron of the low-copy nuclear gene serine/threonine phosphatase, for a total aligned length of 9456 base pairs. Analyses include multiple accessions of all species in the genus. The data support the monophyly of Psiguria and elucidate several species boundaries. Also presented are Psiguria-specific DNA barcodes, which include the chloroplast regions: ndhC-trnV, rps16-trnQ, rpoB-trnC, ndhF-rpl32, and psbZ-trnM. For the first time, systematists, ecologists, and evolutionary biologists will have the tools to confidently identify species of Psiguria with DNA barcodes that may be useful in other genera of Cucurbitaceae.  相似文献   

8.
The completion of the land bridge between North and South America approximately 3.5-3.1 million years ago (Ma) initiated a tremendous biogeographic event called the Great American Biotic Interchange (GABI), described principally from the mammalian fossil record. The history of biotic interchange between continents for taxonomic groups with poor fossil records, however, is not well understood. Molecular and fossil data suggest that a number of plant and animal lineages crossed the Isthmus of Panama well before 3.5 Ma, leading biologists to speculate about trans-oceanic dispersal mechanisms. Here we present a molecular phylogenetic analysis of the frog genus Pristimantis based on 189 individuals of 137 species, including 71 individuals of 31 species from Panama and Colombia. DNA sequence data were obtained from three mitochondrial (COI, 12S, 16S) and two nuclear (RAG-1 and Tyr) genes, for a total of 4074 base pairs. The resulting phylogenetic hypothesis showed statistically significant conflict with most recognized taxonomic groups within Pristimantis, supporting only the rubicundus Species Series, and the Pristimantis myersi and Pristimantis pardalis Species Groups as monophyletic. Inference of ancestral areas based on a likelihood model of geographic range evolution via dispersal, local extinction, and cladogenesis (DEC) suggested that the colonization of Central America by South American Pristimantis involved at least 11 independent events. Relaxed-clock analyses of divergence times suggested that at least eight of these invasions into Central America took place prior to 4 Ma, mainly in the Miocene. These findings contribute to a growing list of molecular-based biogeographic studies presenting apparent temporal conflicts with the traditional GABI model.  相似文献   

9.
Aim  We used inferences of phylogenetic relationships and divergence times for three lineages of highland pitvipers to identify broad-scale historical events that have shaped the evolutionary history of Middle American highland taxa, and to test previous hypotheses of Neotropical speciation.
Location  Middle America (Central America and Mexico).
Methods  We used 2306 base pairs of mitochondrial gene sequences from 178 individuals to estimate the phylogeny and divergence times of New World pitviper lineages, focusing on three genera ( Atropoides , Bothriechis and Cerrophidion ) that are broadly co-distributed across Middle American highlands.
Results  We found strong correspondence across three highland lineages for temporally and geographically coincident divergences in the Miocene and Pliocene, and further identified widespread within-species divergences across multiple lineages that occurred in the early–middle Pleistocene.
Main conclusions  Available data suggest that there were at least three major historical events in Middle America that had broad impacts on species divergence and lineage diversification among highland taxa. In addition, we find widespread within-species genetic structure that may be attributable to the climatic changes that affected gene flow among highland taxa during the middle–late Pleistocene.  相似文献   

10.
Notothenioids represent an adaptive radiation of teleost fishes in the frigid and ice-laden waters of the Southern Ocean surrounding Antarctica. Phylogenetic hypotheses for this clade have resulted primarily from analyses of mtDNA gene sequences, and studies utilizing nuclear gene DNA sequence data have focused on particular sub-clades of notothenioid fishes. In this study, we provide the first phylogenetic analysis of notothenioids using both mtDNA and nuclear gene sequences for a comprehensive sampling of all major lineages in the clade. Maximum parsimony and Bayesian analyses of aligned mtDNA genes, an aligned nuclear gene (S7 ribosomal protein intron 1), and combined dataset containing the mtDNA and nuclear genes resulted in phylogenies that contained the previously identified Antarctic and High Antarctic Clades. There were areas of agreement and disagreement between different datasets and methods of phylogenetic analysis, and the phylogenies resulting from the nuclear encoded S7 ribosomal protein intron 1 sequences were considerably less resolved than those inferred from mtDNA gene sequences. However, we anticipate increased resolution of the notothenioid phylogeny from future analyses that sample DNA sequences from several nuclear genes.  相似文献   

11.
We analyzed the avifaunas of the Caribbean islands and nearby continental areas and their relationships using Parsimony Analysis of Endemicity (PAE), in order to assess biogeographical patterns and their concordance with geological and phylogenetic evidence. Using distributional information of birds obtained from published literature, a presence/absence matrix for 695 genera and 2026 species of land and freshwater birds was constructed and analyzed. Three different analyses were performed: for species, for genera, and for species and genera combined. In the combined analysis, the Lesser Antilles appear paraphyletic at the base of the cladogram. Then, two major clades are identified: South America (Andes, Venezuelan lowlands, Dutch West Indies and Trinidad and Tobago) and North America, including the Greater Antilles in a clade that is the sister area to Yucatan and the Central American countries nested from north to south. PAE results support Caribbean vicariant models and cladistic biogeographical hypotheses on area relationships, and show relative congruence with available phylogenetic data. Bird biogeography on the Caribbean islands appears to have been caused by both vicariance and dispersal processes. © The Willi Hennig Society 2007.  相似文献   

12.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species.  相似文献   

13.
We examined the phylogenetic relationships of 16 northern species of the aplocheiloid genus Rivulus inhabiting the Caribbean, Central America, and South America. A total of 714 base pairs per taxon were sequenced from two segments of the mitochondrial genome, 12S rRNA and cytochrome b. Both parsimony and neighbor-joining analyses suggest an ancient vicariant origin of the Greater Antillean taxa, in addition to a quite recent dispersal of species into the Lesser Antilles from the South American mainland. Combined analyses support the monophyly of the northern South American assemblage as the sister group of a Central American/Columbian biota. However, the monophyly of the Central American biota remains uncertain. Divergence estimates for the Central American taxa are calibrated from the Last Cretaceous separation of the proto-Antilles from the Americas. These data suggest that the extant Central American taxa represent the descendants of at least two separate invasions during the Cenozoic, prior to the closing of the Panamanian isthmus. Times are consistent with the extensive evidence for reptilian and mammalian exchange throughout the Cenozoic.   相似文献   

14.
The traditional explanation of the distribution of the Mormoopidae is that this family originated in southern Central America or northern South America, later expanding its range north to Mexico and the West Indies, and differentiating into eight species. An alternative fossil-based hypothesis argues that the family originated in the northern Neotropics, reached the Caribbean early in its history, and dispersed to South America after the completion of the Isthmus of Panama. The present study analyses new and previously published sequence data from the mitochondrial 12S, tRNAval, 16S, and cytochrome b , and the nuclear Rag 2, to evaluate species boundaries and infer relationships among extant taxa. Fixed differences in cytochrome b often coincide with published morphological characters and show that the family contains at least 13 species. Two additional, morphologically indistinct, lineages are restricted to Suriname and French Guiana. Phylogeny-based inferences of ancestral area are equivocal on the geographical origin of mormoopids, in part because several internal nodes are not resolved with the available data. Divergences between Middle American and Antillean populations are greater than those between Mexico/Central America and South America. This suggests that mormoopids diversified in northern Neotropics before entering South America. A northern neotropical origin for mormoopids is congruent with both the Tertiary fossil record and recent phylogenetic hypotheses for the sister family to the Mormoopidae, the Phyllostomidae.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 101–118.  相似文献   

15.

Premise of the Study

The species boundaries of wild and cultivated potatoes are controversial, with most of the taxonomic problems in the cultivated potato clade. We here provide the first in‐depth phylogenetic study of the cultivated potato clade to explore possible causes of these problems.

Methods

We examined 131 diploid accessions, using 12 nuclear orthologs, producing an aligned data set of 14,072 DNA characters, 2171 of which are parsimony‐informative. We analyzed the data to produce phylogenies and perform concordance analysis and goodness‐of‐fit tests.

Key Results

There is good phylogenetic structure in clades traditionally referred to as clade 1+2 (North and Central American diploid potatoes exclusive of Solanum verrucosum), clade 3, and a newly discovered basal clade, but drastically reduced phylogenetic structure in clade 4, the cultivated potato clade. The results highlight a clade of species in South America not shown before, ‘neocardenasii’, sister to clade 1+2, that possesses key morphological traits typical of diploids in Mexico and Central America. Goodness‐of‐fit tests suggest potential hybridization between some species of the cultivated potato clade. However, we do not have enough phylogenetic signal with the data at hand to explicitly estimate such hybridization events with species networks methods.

Conclusions

We document the close relationships of many of the species in the cultivated potato clade, provide insight into the cause of their taxonomic problems, and support the recent reduction of species in this clade. The discovery of the neocardenasii clade forces a reevaluation of a hypothesis that section Petota originated in Mexico and Central America.  相似文献   

16.
The Neotropical bolitoglossine salamanders represent an impressive adaptive radiation, comprising roughly 40% of global salamander species diversity. Despite decades of morphological studies and molecular work, a robust multilocus phylogenetic hypothesis based on DNA sequence data is lacking for the group. We estimated species trees based on multilocus nuclear and mitochondrial data for all major lineages within the bolitoglossines, and used our new phylogenetic hypothesis to test traditional biogeographical scenarios and hypotheses of morphological evolution in the group. In contrast to previous phylogenies, our results place all Central American endemic genera in a single clade and suggest that Central America played a critical role in the early biogeographical history of the group. The large, predominantly Mexican genus Pseudoeurycea is paraphyletic, and analyses of the nuclear data place two lineages of Pseudoeurycea as the sister group of Bolitoglossa. Our phylogeny reveals extensive homoplasy in morphological characters, which may be the result of truncation or alteration of a shared developmental trajectory. We used our phylogenetic results to revise the taxonomy of the genus Pseudoeurycea. © 2015 The Linnean Society of London  相似文献   

17.
18.
We reconstructed phylogenetic relationships of the family Badidae using both mitochondrial and nuclear nucleotide sequence data to address badid systematics and to evaluate the role of vicariant speciation on their evolution and current distribution. Phy-logenetic hypotheses were derived from complete cytochrome b (1,140 base pairs) sequences of 33 individuals representing 13 badid species, and using three species of Nandidae as outgroups. Additionally, we sequenced the nuclear RAG1 (1,473 base pairs) and Tmo-4C4 (511 base pairs) genes from each of the badid species and one representative of the outgroup. Our molecular data provide the first phylogenetic hypothesis of badid intrarelationships. Analysis of the mitochondrial and nuclear nucleotide sequence data sets resulted in well-supported trees, indicating a basal split between the genera Dario and Badis, and further supporting the division of the genus Badis into five species groups as suggested by a previous taxonomic revision of the Badidae. Within the genus Badis, mitochondrial and nuclear phylogenies differed in the relative position of B. kyar. We also used our molecular phylogeny to test a vicariant speciation hypothesis derived from geological evidence of large-scale changes in drainage patterns in the Miocene affecting the Irrawaddy- and Tsangpo-Brahmaputra drainages, in the southeastern Himalaya. Within both genera, Badis and Dario, we observed a divergence into Irrawaddy- and Tsangpo-Brahmaputra clades. Using a cytb substitution rate of 8.2 x 10(-9) (substitutions x base pair(-1) x year(-1), we tentatively date this vicariant event at the Oligocene-Miocene boundary (19-24Myr). It is concordant with a hypothesized paleo connection of the Tsangpo river with the Irrawaddy drainage that was most likely interrupted during Miocene orogenic events through tectonic uplifts in eastern Tibet. Our data, therefore, indicate a substantial role of vicariant-based speciation shaping the current distribution patterns of badids.  相似文献   

19.
Monocots are consistently paraphyletic in 18S gene trees in all studies to date. This anomaly is generally expressed in the phylogenetic associations of two lineages, that of Acoraceae, which is excluded from the monocots, and Ceratophyllaceae, which sometimes clusters within the monocots. Six explanations for these unexpected results are proposed: (1) erroneous published sequences, (2) actual paraphyly of monocots with dicots, (3) insufficient taxon density among relevant taxa; (4) long-branch attraction between selected taxa, (5) an anomalous 18S paralogue in the basal species of monocots, and (6) differential lineage sorting or other molecular evolutionary events. Tests of each of these hypotheses were conducted. For the first five hypotheses, test results refuted the hypothesis. Support for the sixth hypothesis, differential lineage sorting, is the strongest. Since lineage sorting seems to be restricted to a few species, identification and removal of these species prior to performing separate or combined phylogenetic analysis of DNA data incorporating sequences from 18S may be advisable.  相似文献   

20.
Phylogenetic relationships among the 12 recognized fish species in the New World genus Centropomus (Pisces, Centropomidae) were analyzed using allozyme electrophoresis and 618 bp of the mitochondrial DNA 16S ribosomal RNA (rRNA) gene. Molecular phylogenetic trees were generally consistent with previously published partial hypotheses based on morphological evidence. However, previously undefined sister group relationships between major species groups were resolved using molecular data, and phylogenetic hypotheses for Centropomus based on 16S rRNA sequences were better supported than were allozyme-based hypotheses. The high level of congruence among the trees inferred from the nuclear and mitochondrial characters provided a firm phylogenetic basis for analysis of ecological diversification and molecular evolution in the genus. Compared to basal Centropomus species, members of the most nested species group were significantly larger in body size and occupied a marine niche only peripherally utilized by their congeners. We also observed substitution rate heterogeneity among 16S rRNA lineages; in contrast to expectations based on "metabolic rate" and "generation interval" models, relative substitution rates were faster than expected for the group of large-bodied snooks. Using the Pliocene rise of the Central American isthmian marine barrier to calibrate rates of 16S ribosomal gene evolution in Centropomus, we found that the rates for the genus were similar to those reported for higher vertebrates. Analysis of the three sets of transisthmian geminate taxa in Centropomus indicated that two of the pairs were probably formed during the Pliocene rise of the isthmus while the third pair diverged several million years earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号