首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular hydrogen (H2) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H2-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH]out) and the presence of formate. FHL is related with the F0F1-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H2-oxidizing enzymes during glucose fermentation at neutral and low [pH]out. They operate in a reverse, H2-producing mode during glycerol fermentation at neutral [pH]out. Hyd-1 and Hyd-2 activity depends on F0F1. Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H2 production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.  相似文献   

2.
Molecular hydrogen (H(2)) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H(2)-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH](out)) and the presence of formate. FHL is related with the F(0)F(1)-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H(2)-oxidizing enzymes during glucose fermentation at neutral and low [pH](out). They operate in a reverse, H(2)-producing mode during glycerol fermentation at neutral [pH](out). Hyd-1 and Hyd-2 activity depends on F(0)F(1). Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H(2) production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H(2) production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H(2) production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.  相似文献   

3.
Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH carries out a mixed-acid fermentation resulting in the production of formate among the other products that can be excreted or further oxidized to H(2) and CO(2). H(2) production is largely dependent on formate dehydrogenase H and hydrogenases 3 and 4 constituting two formate hydrogen lyases, and on the F(0)F(1)-ATPase. In this study, it has been shown that formate markedly increased ATPase activity in membrane vesicles. This activity was significantly (1.8-fold) stimulated by 100mM K(+) and inhibited by N,N(')-dicyclohexylcarbodiimide and sodium azide. The increase in ATPase activity was absent in atp, trkA, and hyf but not in hyc mutants. ATPase activity was also markedly increased by formate when bacteria were fermenting glucose with external formate (30mM) in the growth medium. However this activity was not stimulated by K(+) and absent in atp and hyc but not in hyf mutants. The effects of formate on ATPase activity disappeared when cells were performing anaerobic (nitrate/nitrite) or aerobic respiration. These results suggest that the F(0)F(1)-ATPase activity is dependent on K(+) uptake TrkA system and hydrogenase 4, and on hydrogenase 3 when cells are fermenting glucose in the absence and presence of external formate, respectively.  相似文献   

4.
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two 'uptake' hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production from sugars. In this work, the effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of preculture conditions, on hydrogen production and fermentation balance were examined. In suspensions of resting cells pregrown aerobically with formate, deletions in Hyd-3 abolished hydrogen production, whereas the deletion of both uptake hydrogenases improved hydrogen production by 37% over the parent strain. Under fermentative conditions, respiratory H2 uptake activity was absent in strains lacking Hyd-2. The effect of a deletion in hycA on H2 production was found to be dependent upon environmental conditions, but H2 uptake was not significantly affected by this mutation.  相似文献   

5.
A mutant strain of Escherichia coli was isolated in which Gly-48 of the mature epsilon-subunit of the energy-transducing adenosine triphosphatase was replaced by Asp. This amino acid substitution caused inhibition of ATPase activity (about 70%), loss of ATP-dependent proton translocation and lowered oxidative phosphorylation, but did not affect proton translocation through the F0. Purified F1-ATPase from the mutant strain bound to stripped membranes with the same affinity as the normal F1-ATPase. Partial revertant strains were isolated in which Pro-47 of the epsilon-subunit was replaced by Ser or Thr. Pro-47 and Gly-48 are predicted to be residues 2 and 3 in a Type II beta-turn and the Gly-48 to Asp substitution is predicted to cause a change from a Type II to a Type I or III beta-turn. Space-filling models of the beta-turn (residues 46-49) in the normal, mutant and partial revertant epsilon-subunits indicate that the peptide oxygen between Pro-47 and Gly-48 is in a different position to the peptide oxygen between Pro-47 and Asp-48 and that the substitution of Pro-47 by either Ser or Thr restores an oxygen close to the original position. It is suggested that the peptide oxygen between Pro-47 and Gly-48 of the epsilon-subunit is involved either structurally in inter-subunit H-bonding or directly in proton movements through the F1-ATPase.  相似文献   

6.
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously.  相似文献   

7.
Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed.  相似文献   

8.
Three mutations in the uncB gene encoding the a-subunit of the F0 portion of the F0F1-ATPase of Escherichia coli were produced by site-directed mutagenesis. These mutations directed the substitution of Glu-219 by Gln, or of Lys-203 by Ile, or of Glu-196 by Ala. Strains carrying either the Lys-203 or Glu-196 substitutions showed growth characteristics indistinguishable from the coupled control strain. Properties of membrane preparations from these strains were also similar to those from the coupled control strain. The substitution of Glu-219 by Gln resulted in a strain which was unable to utilise succinate as sole carbon source and had a growth-yield characteristic of an uncoupled strain. Membrane preparations of the Glu-219 mutant were proton impermeable and the F1-ATPase activity was inhibited by about 50% when membrane-bound. The results are discussed with reference to a previously proposed intramembranous proton pore involving subunits a and c.  相似文献   

9.
Site-directed mutagenesis was used to generate three mutations in the uncB gene encoding the a-subunit of the F0 portion of the F0F1-ATPase of Escherichia coli. These mutations directed the substitution of Arg-210 by Gln, or of His-245 by Leu, or of both Lys-167 and Lys-169 by Gln. The mutations were incorporated into plasmids carrying all the structural genes encoding the F0F1-ATPase complex and these plasmids were used to transform strain AN727 (uncB402). Strains carrying either the Arg-210 or His-245 substitutions were unable to grow on succinate as sole carbon source and had uncoupled growth yields. The substitution of Lys-167 and Lys-169 by Gln resulted in a strain with growth characteristics indistinguishable from a normal strain. The properties of the membranes from the Arg-210 or His-245 mutants were essentially identical, both being proton impermeable and both having ATPase activities resistant to the inhibitor DCCD. Furthermore, in both mutants, the F1-ATPase activities were inhibited by about 50% when bound to the membranes. The membrane activities of the mutant with the double lysine change were the same as for a normal strain. The results are discussed in relation to a previously proposed model for the F0 (Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. (1986) Biochim. Biophys. Acta 849, 62-69).  相似文献   

10.
Using manual rapid-mixing procedures in which small, equal volumes of Escherichia coli F1-ATPase and [gamma-32P]ATP were combined at final concentrations of 2 and 0.2 microM, respectively (i.e., unisite catalysis conditions), it was shown that greater than or equal to 66% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi equal to 0.4 and the rate of dissociation of bound [32P]Pi equal to 3.5 x 10(-3) s-1, similar to previously published values. Azide is known to inhibit cooperative but not unisite catalysis in F1-ATPase [Noumi, T., Maeda, M., & Futai, M. (1987) FEBS Lett. 213, 381-384]. In the presence of 1 mM sodium azide, 99% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi being 0.57. These experiments demonstrated that when conditions are used which minimize cooperative catalysis, most or all of the F1 molecules bind substoichiometric ATP tightly, hydrolyze it with retention of bound ATP and Pi, and release the products slowly. The data justify the validity of previously published rate constants for unisite catalysis. Unisite catalysis in E. coli F1-ATPase was studied at varied pH from 5.5 to 9.5 using buffers devoid of phosphate. Rate constants for ATP binding/release, ATP hydrolysis/resynthesis, Pi release, and ADP binding/release were measured; the Pi binding rate constant was inferred from the delta G for ATP hydrolysis. ATP binding was pH-independent; ATP release accelerated at higher pH. The highest KaATP (4.4 x 10(9) M-1) was seen at physiological pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Escherichia coli strain KF148(SD-) defective in translation of the uncC gene for the epsilon subunit of H(+)-ATPase could not support growth by oxidative phosphorylation due to lack of F1 binding to Fo (M. Kuki, T. Noumi, M. Maeda, A. Amemura, and M. Futai, 1988, J. Biol. Chem. 263, 17, 437-17, 442). Mutant uncC genes for epsilon subunits lacking different lengths from the amino terminus were constructed and introduced into strain KF148(SD-). F1 with an epsilon subunit lacking the 15 amino-terminal residues could bind to F0 in a functionally competent manner, indicating that these amino acid residues are not absolutely necessary for formation of a functional enzyme. However, mutant F1 in which the epsilon subunit lacked 16 amino-terminal residues showed defective coupling between ATP hydrolysis (synthesis) and H(+)-translocation, although the mutant F1 showed partial binding to Fo. These findings suggest that the epsilon subunit is essential for binding of F1 to F0 and for normal H(+)-translocation. Previously, Kuki et al. (cited above) reported that 60 residues were not necessary for a functional enzyme. However, the mutant with an epsilon subunit lacking 15 residues from the amino terminus and 4 residues from the carboxyl terminus was defective in oxidative phosphorylation, suggesting that both terminal regions affect the conformation of the region essential for a functional enzyme.  相似文献   

12.
A site-directed mutation in the gene which codes for the c-subunit of the F1F0-ATPase, resulting in the substitution of Ala-25 by Tyr, has been constructed and characterized. A plasmid carrying the mutation was used to transform strain AN943 (uncE429). The resulting strain is unable to grow on succinate as sole carbon source and possesses an uncoupled growth yield. Membranes prepared from the mutant possess low levels of ATPase activity and are proton-impermeable. The F1-ATPase activity was found to be inhibited by 80% when bound to the membrane. When carried on a plasmid, the mutation is dominant in complementation tests with all mutant unc alleles tested and when transformed into wild-type strain AN346, the mutation results in an uncoupled phenotype. A mutant which overcomes this dominance was isolated and found to possess an 11-amino-acid deletion extending from Ile-55 to Met-65 within the c-subunit. These results are discussed in relation to the previously isolated Ala-25 to Thr mutant (Fimmel, A.L., Jans, D.A., Hatch, L., James, L.B., Gibson, F. and Cox, G.B. (1985) Biochim. Biophys. Acta 808, 252-258) and in relation to a previously proposed model for the F0 (Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. (1986) Biochim. Biophys. Acta 849, 62-69).  相似文献   

13.
A mutant strain of Escherichia coli carrying a mutation in the uncE gene which codes for the c-subunit of the F1F0-ATPase has been isolated and examined. The mutant allele, designated uncE513, results in alanine at position 25 of the c-subunit being replaced by threonine. The mutant F1F0-ATPase appears to be fully assembled and is partially functional with respect to oxidative phosphorylation. The ATPase activity of membranes from the mutant strain is resistant to the inhibitor dicyclohexylcarbodiimide, but this is due to the F1-ATPase being lost from the membranes in the presence of the inhibitor. Mutant membranes from which the F1-ATPase has been removed have a greatly reduced proton permeability compared with similarly treated normal membranes. The results are discussed in relation to a previously proposed mechanism of oxidative phosphorylation.  相似文献   

14.
The effects of amino acid substitutions in the carboxyl terminal region of the H(+)-ATPase a subunit (271 amino acid residues) of Escherichia coli were studied using a defined expression system for uncB genes coded by recombinant plasmids. The a subunits with the mutations, Tyr-263----end, Trp-231----end, Glu-219----Gln, and Arg-210----Lys (or Gln) were fully defective in ATP-dependent proton translocation, and those with Gln-252----Glu (or Leu), His-245----Glu, Pro-230----Leu, and Glu-219----His were partially defective. On the other hand, the phenotypes of the Glu-269----end, Ser-265----Ala (or end), and Tyr-263----Phe mutants were essentially similar to that of the wild-type. These results suggested that seven amino acid residues between Ser-265 and the carboxyl terminus were not required for the functional proton pathway but that all the other residues except Arg-210, Glu-219, and His-245 were required for maintaining the correct conformation of the proton pathway. The results were consistent with a report that Arg-210 is directly involved in proton translocation.  相似文献   

15.
Activation of protein kinase C (PKC) in human T lymphocytes is an immediate consequence of mitogenic signalling via the antigen-receptor complex and CD2 antigen. In order to investigate further the signal-transduction pathways which result in PKC activation, we have established a novel PKC assay system using streptolysin-O-permeabilized T cells. Known peptide substrates of PKC were introduced into permeabilized cells in the presence of [gamma-32P]ATP, 3 mM-Mg2+ and 150 nM free Ca2+. The peptide found to have the lowest background phosphorylation had the sequence Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys (peptide GS), and the phosphorylation of the peptide was increased up to 6-fold by direct activation of PKC with phorbol 12,13-dibutyrate. Induction of PKC activation with the UCHT1 antibody against the CD3 antigen, or with phytohaemagglutinin (PHA) or guanosine 5'-[gamma-thio]triphosphate (GTP[S]), increased peptide-GS phosphorylation by 2-3 fold. The specificity of PKC action on peptide GS was demonstrated by blocking increases in phosphorylation with a pseudosubstrate peptide PKC inhibitor. PKC activation by this technique could be detected within 1 min of adding external ligand. Dose-response curves revealed that PHA-induced production of inositol phosphates correlated closely with PKC activities, whereas only a partial correlation between these parameters was observed with GTP[S]. Our data are consistent with the presence of more than one G-protein-mediated pathway of PKC regulation in T cells. The quantitative PKC assay system described is both simple and reproducible, and its potential application to a wide range of cell types should prove useful in further investigations of PKC activation mechanisms.  相似文献   

16.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate, H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N'-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

17.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

18.
A mutant affected in the b subunit (coded by the uncF gene) of the F1F0-ATPase in Escherichia coli was isolated by a localized mutagenesis procedure in which a plasmid carrying the unc genes was mutagenized in vivo. The biochemical properties of cells carrying the uncF515 allele were examined in a strain carrying the allele on a multicopy plasmid and a mutator-induced polar unc mutation on the chromosome. The strain carrying the mutant unc allele was uncoupled with respect to oxidative phosphorylation. Membrane-bound ATPase activity was very low or absent, and membranes were somewhat proton permeable. It was concluded that the F0 sector was assembled. Determination of the DNA sequence of the uncF515 allele showed it differed from wild type in that a G----A substitution occurred at position 392, resulting in glycine being replaced by aspartate at position 131. Genetic complementation tests indicated that the uncF515 allele complemented the uncF476 allele (Gly 9----Asp). Two-dimensional gel electrophoresis of membrane preparations indicated that the uncF515 and uncF476 alleles interrupted assembly of the F1F0-ATPase at different stages.  相似文献   

19.
The structural organization and overall dimensions of the Escherichia coli F1-ATPase in solutionhas been analyzed by synchroton X-ray scattering. Using an independent ab initio approach,the low-resolution shape of the hydrated enzyme was determined at 3.2 nm resolution. Theshape permitted unequivocal identification of the volume occupied by the 3 3 complex ofthe atomic model of the ECF1-ATPase. The position of the ^ and subunits were found byinteractive fitting of the solution scattering data and by cross-linking studies. Laser-inducedcovalent incorporation of 2-azido-ATP established a direct relationship between nucleotidebinding affinity and the different interactions between the stalk subunits and with the threecatalytic subunits () of the F1-ATPase. Mutants of the ECF1-ATPase with the introductionof Trp-for-Tyr replacement in the catalytic site of the complex made it possible to monitorthe activated state for ATP synthesis (ATP conformation) in which the and subunits arein close proximity to the subunits and the ADP conformation, with the stalk subunits arelinked to the subunit.  相似文献   

20.
We discussed application of in vitro mutagenesis on H+-ATPase (F0F1) of Escherichia coli. The oligonucleotide-directed site specific mutagenesis and construction of a set of truncated subunits were useful for identifying essential residues of beta subunit and a functional region of epsilon subunit, respectively, of this complicated membrane enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号