首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experiments indicate an important role for Src family and Syk protein tyrosine kinases and phosphatidylinositol 3-kinase in the signal transduction process initiated by mouse receptors for IgG and leading to phagocytosis. Considerably less is known regarding signal transduction by the human-restricted IgG receptor, FcgammaRIIa. Furthermore, the relationship among the Src family, Syk, and phosphatidylinositol 3-kinase in phagocytosis is not understood. Here, we show that FcgammaRIIa is phosphorylated by an Src family member, which results in recruitment and concomitant activation of the distal enzymes Syk and phosphatidylinositol 3-kinase. Using a FcgammaRI-p85 receptor chimera cotransfected with kinase-inactive mutants of Syk or application of a pharmacological inhibitor of Syk, we show that Syk acts in parallel with phosphatidylinositol 3-kinase. Our results indicate that FcgammaRIIa-initiated monocyte or neutrophil phagocytosis proceeds from the clustered IgG receptor to Src to phosphatidylinositol 3-kinase and Syk.  相似文献   

2.
Overexpression of the mutationally activated receptor tyrosine kinase Xiphophorus melanoma receptor kinase (Xmrk) initiates formation of hereditary malignant melanoma in the fish Xiphophorus. In melanoma as well as in a melanoma-derived cell line (PSM) this receptor is highly activated resulting in constitutive Xmrk-mediated mitogenic signaling. In order to analyze mitogenic signaling triggered by Xmrk a possible involvement of phosphatidylinositol 3 (PI3)-kinase in Xmrk signal transduction was examined. Constitutive binding of the p85 adapter subunit of PI3-kinase to the Xmrk receptor was detected in PSM melanoma cells. Further analyses in BHK cells expressing a Xmrk chimera (HER-mrk) showed that p85 association with the intracellular part of Xmrk was dependent on autophosphorylation of the receptor. In vitro binding studies revealed that the interaction is mediated mainly through the N-terminal SH2 domain of p85 which directly binds to a sequence motif around phosphorylated Tyr-983 in the Xmrk carboxy-terminus. In accordance with recruitment of p85 by Xmrk in PSM cells, the PI3-kinase downstream target Akt was found to be highly phosphorylated on Ser-473, indicating efficient PI3-kinase signaling in melanoma cells. PI3-kinase activation was also detected in Xiphophorus melanoma. Moreover, malignant melanomas exhibited an increased level of PI3-kinase activity which was about three times higher than that in benign pigmented lesions. Inhibition of PI3-kinase activity in PSM melanoma cells by both Wortmannin and LY294002 blocked entry into S-phase. Together these data demonstrate that PI3-kinase is a substrate of the oncogenic Xmrk receptor and plays a significant role in mitogenic signaling of melanoma cells and the formation of malignant melanoma in Xiphophorus.  相似文献   

3.
Activation of intracellular signaling pathways by growth factors is one of the major causes of cancer development and progression. Recent studies have demonstrated that monomeric G proteins of the Ras family are key regulators of cell proliferation, migration, and invasion. Using an invasive breast cancer cell lines, we demonstrate that the ADP-ribosylation factor 1 (ARF1), a small GTPase classically associated with the Golgi, is an important regulator of the biological effects induced by epidermal growth factor. Here, we show that this ARF isoform is activated following epidermal growth factor stimulation and that, in MDA-MB-231 cells, ARF1 is found in dynamic plasma membrane ruffles. Inhibition of endogenous ARF1 expression results in the inhibition of breast cancer cell migration and proliferation. The underlying mechanism involves the activation of the phosphatidylinositol 3-kinase pathway. Our data demonstrate that depletion of ARF1 markedly impairs the recruitment of the phosphatidylinositol 3-kinase catalytic subunit (p110alpha) to the plasma membrane, and the association of the regulatory subunit (p85alpha) to the activated receptor. These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression.  相似文献   

4.
We report the development of a quantitative assay for measuring SH2 domain binding in vitro. Using this assay we have analyzed the binding of purified recombinant SH2 domains from ras GTPase activating protein (GAP) and the 85-kDa subunit of phosphatidylinositol 3-kinase (p85) to proteins from epidermal growth factor-stimulated and v-src-transformed cells. The purified recombinant SH2 domains from GAP and p85 bind to the tyrosine phosphorylated epidermal growth factor receptor with nanomolar affinities. Moreover, competition studies suggest that these two proteins bind to equivalent or overlapping sites on this receptor. In v-src-transformed cells the purified recombinant SH2 domains from GAP and p85 bind to distinct but overlapping sets of proteins.  相似文献   

5.
Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.  相似文献   

6.
Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2’s role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival.  相似文献   

7.
In mast cells, cross-linking the high-affinity IgE receptor (Fc(epsilon)RI) initiates the Lyn-mediated phosphorylation of receptor ITAMs, forming phospho-ITAM binding sites for Syk. Previous immunogold labeling of membrane sheets showed that resting Fc(epsilon)RI colocalize loosely with Lyn, whereas cross-linked Fc(epsilon)RI redistribute into specialized domains (osmiophilic patches) that exclude Lyn, accumulate Syk, and are often bordered by coated pits. Here, the distribution of Fc(epsilon)RI beta is mapped relative to linker for activation of T cells (LAT), Grb2-binding protein 2 (Gab2), two PLCgamma isoforms, and the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase), all implicated in the remodeling of membrane inositol phospholipids. Before activation, PLCgamma1 and Gab2 are not strongly membrane associated, LAT occurs in small membrane clusters separate from receptor, and PLCgamma2, that coprecipitates with LAT, occurs in clusters and along cytoskeletal cables. After activation, PLCgamma2, Gab2, and a portion of p85 colocalize with Fc(epsilon)RI beta in osmiophilic patches. LAT clusters enlarge within 30 s of receptor activation, forming elongated complexes that can intersect osmiophilic patches without mixing. PLCgamma1 and another portion of p85 associate preferentially with activated LAT. Supporting multiple distributions of PI3-kinase, Fc(epsilon)RI cross-linking increases PI3-kinase activity in anti-LAT, anti-Fc(epsilon)RIbeta, and anti-Gab2 immune complexes. We propose that activated mast cells propagate signals from primary domains organized around Fc(epsilon)RIbeta and from secondary domains, including one organized around LAT.  相似文献   

8.
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110alpha catalytic subunit of PI3-K (but not p110beta) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C lambda. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P(3)]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P(3) is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P(3) is required for both phenomena. We propose that PI-3,4,5-P(3) leads to actin remodeling, which in turn segregates p85alpha and p110alpha, thus localizing PI-3,4,5-P(3) production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P(3) and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.  相似文献   

9.
The ppb1(+) gene encodes a fission yeast homologue of the mammalian calcineurin. We have recently shown that Ppb1 is essential for chloride ion homeostasis, and acts antagonistically with Pmk1 mitogen-activated protein kinase pathway. In an attempt to identify genes that share an essential function with calcineurin, we screened for mutations that confer sensitivity to the calcineurin inhibitor FK506 and high temperature, and isolated a mutant, its3-1. its3(+) was shown to be an essential gene encoding a functional homologue of phosphatidylinositol-4-phosphate 5-kinase (PI(4)P5K). The temperature upshift or addition of FK506 induced marked disorganization of actin patches and dramatic increase in the frequency of septation in the its3-1 mutants but not in the wild-type cells. Expression of a green fluorescent protein-tagged Its3 and the phospholipase Cdelta pleckstrin homology domain indicated plasma membrane localization of PI(4)P5K and phosphatidylinositol 4,5-bisphosphate. These green fluorescent protein-tagged proteins were concentrated at the septum of dividing cells, and the mutant Its3 was no longer localized to the plasma membrane. These data suggest that fission yeast PI(4)P5K Its3 functions coordinately with calcineurin and plays a key role in cytokinesis, and that the plasma membrane localization of Its3 is the crucial event in cytokinesis.  相似文献   

10.
ADAM 12, a member of the ADAM family of transmembrane metalloprotease-disintegrins, has been implicated previously in the differentiation of skeletal myoblasts. In the present study, we show that the cytoplasmic tail of mouse ADAM 12 interacts in vitro and in vivo with the Src homology 3 domain of the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase. By site-directed mutagenesis, we have identified three p85alpha-binding sites in ADAM 12 involving PXXP motifs located at amino acids 825-828, 833-836, and 884-887. Using green fluorescent protein (GFP)-pleckstrin homology (PH) domain fusion protein as a probe for PI 3-kinase lipid products, we have further demonstrated that expression of ADAM 12 in C2C12 cells resulted in translocation of GFP-PH to the plasma membrane. This suggests that transmembrane ADAM 12, by providing docking sites for the Src homology 3 domain of p85alpha, activates PI 3-kinase by mediating its recruitment to the membrane. Because PI 3-kinase is critical for terminal differentiation of myoblasts, and because expression of ADAM 12 is up-regulated at the onset of the differentiation process, ADAM 12-mediated activation may constitute one of the regulatory mechanisms for PI 3-kinase during myoblast differentiation.  相似文献   

11.
Recent studies have indicated that various growth factors are involved in synaptic functions; however, the precise mechanisms remain unclear. In order to elucidate the molecular mechanisms of the growth factor-mediated regulation of presynaptic functions, the effects of epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) on neurotransmitter release were studied in rat PC12 cells. Brief treatment with EGF and IGF-1 enhanced Ca2+-dependent dopamine release in a concentration-dependent manner. EGF activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-kinase) pathways, and the EGF-dependent enhancement of DA release was suppressed by a MAPK kinase inhibitor as well as by PI3-kinase inhibitors. In striking contrast, IGF-1 activated the PI3-kinase pathway but not the MAPK pathway, and IGF-1-dependent enhancement was suppressed by a PI3-kinase inhibitor but not by a MAPK kinase inhibitor. The enhanced green fluorescent protein-tagged pleckstrin homology (PH) domain of protein kinase B, which selectively binds to phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate, was translocated to the plasma membrane after treatment with either EGF or NGF. By contrast, no significant redistribution was induced by IGF-1. These results indicate that PI3-kinase participates in the enhancement of neurotransmitter release by two distinct mechanisms: EGF and NGF activate PI3-kinase in the plasma membrane, whereas IGF-1 activates PI3-kinase possibly in the intracellular membrane, leading to enhancement of neurotransmitter release in a MAPK-dependent and -independent manner respectively.  相似文献   

12.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110 expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.  相似文献   

13.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

14.
Mechanisms that specifically modulate cell spreading and/or cell migration following epithelial wounding are poorly understood. Using micro-wounded human gastric epithelial monolayers, we show herein that EGF and TGFalpha maximally increase spreading of epithelial sheets under a cell proliferation-independent mechanism. Treatment of confluent HGE-17 cells with the phosphatidylinositol 3-kinase inhibitor, LY294002, and the epidermal growth factor receptor inhibitor, PD153035, strongly reduced basal and TGFalpha-stimulated cell spreading. While pharmacological inhibition of pp60src-kinase activity also attenuated basal epithelial spreading, addition of the mTOR/p70S6K inhibitor rapamycin or a specific siRNA targeting ILK sequence did not affect the kinetic rates of wound closure. Epithelial wound healing was initiated by actin purse-string contraction followed by lamellae formation. Conversely, disruption of actin and tubulin stability with cytochalasin D and nocodazole, respectively, inhibited epithelial sheet spreading. Finally, antibodies directed against the alpha3 integrin subunit, but not against the alpha6 or alpha2 subunits, attenuated epithelial sheet spreading as well as lamellae formation. In conclusion, the current investigation establishes that EGF/TGFalpha and the alpha3beta1 integrin, pp60c-src, EGFR and PI3K pathways are mainly associated with the cell spreading of the restitution process during healing of human gastric epithelial wounds.  相似文献   

15.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

16.
In T cells, glycolipid-enriched membrane (GEM) domains, or lipid rafts, are assembled into immune synapses in response to Ag presentation. However, the properties of T cell GEM domains in the absence of stimulatory signals, such as their size and distribution in the plasma membrane, are less clear. To address this question, we used confocal microscopy to measure GEM domains in unstimulated T cells expressing a GEM-targeted green fluorescent protein molecule. Our experiments showed that the GEM domains were assembled into membrane patches that were micrometers in size, as evidenced by a specific enrichment of GEM-associated molecules and resistance of the patches to extraction by Triton X-100. However, treatment of cells with latrunculin B disrupted the patching of the GEM domains and their resistance to Triton X-100. Similarly, the patches were coenriched with F-actin, and actin occurred in the detergent-resistant GEM fraction of T cells. Live-cell imaging showed that the patches were mobile and underwent translocation in the plasma membrane to immune synapses in stimulated T cells. Targeting of GEM domains to immune synapses was found to be actin-dependent, and required phosphatidylinositol 3-kinase activity and myosin motor proteins. We conclude from our results that T cell GEM domains are constitutively assembled by the actin cytoskeleton into micrometer-sized membrane patches, and that GEM domains and the GEM-enriched patches can function as a vehicle for targeting molecules to immune synapses.  相似文献   

17.
The Tek/Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. To study the signal transduction pathways that are mediated by this receptor, we have used the yeast two-hybrid system to identify signaling molecules that associate with the phosphorylated Tek receptor. Using this approach, we demonstrate that five molecules, Grb2, Grb7, Grb14, Shp2, and the p85 subunit of phosphatidylinositol 3-kinase can interact with Tek in a phosphotyrosine-dependent manner through their SH2 domains. Mapping of the binding sites of these molecules on Tek reveals the presence of a multisubstrate docking site in the carboxyl tail of Tek (Tyr(1100)). Mutation of this site abrogates binding of Grb2 and Grb7 to Tek in vivo, and this site is required for tyrosine phosphorylation of Grb7 and p85 in vivo. Furthermore, stimulation of Tek-expressing cells with Angiopoietin-1 results in phosphorylation of both Tek and p85 and in activation of endothelial cell migration and survival pathways that are dependent in part on phosphatidylinositol 3-kinase. Taken together, these results demonstrate that Angiopoietin-1-induced signaling from the Tek receptor is mediated by a multifunctional docking site that is responsible for activation of both cell migration and cell survival pathways.  相似文献   

18.
Thrombin-induced accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) but not of PtdIns(3,4,5,)P3 is strongly correlated with the relocation to the cytoskeleton of 29% of the p85 alpha regulatory subunit of phosphoinositide 3-kinase (PtdIns 3-kinase) and is accompanied by a significant increase in PtdIns 3-kinase activity in this subcellular fraction. Actually, PtdIns(3,4)P2 accumulation and PtdIns 3-kinase, pp60c-src, and p125FAK translocations as well as aggregation were concomitant events occurring with a distinct lag after actin polymerization. The accumulation of PtdIns(3,4)P2 and the relocalization of PtdIns 3-kinase to the cytoskeleton were both dependent on tyrosine phosphorylation, integrin signaling, and aggregation. Furthermore, although p85 alpha was detected in anti- phosphotyrosine immunoprecipitates obtained from the cytoskeleton of thrombin-activated platelets, we failed to demonstrate tyrosine phosphorylation of cytoskeletal p85 alpha. Tyrphostin treatment clearly reduced its presence in this subcellular fraction, suggesting a physical interaction of p85 alpha with a phosphotyrosyl protein. These data led us to investigate the proteins that are able to interact with PtdIns 3-kinase in the cytoskeleton. We found an association of this enzyme with actin filaments: this interaction was spontaneously restored after one cycle of actin depolymerization-repolymerization in vitro. This association with F-actin appeared to be at least partly indirect, since we demonstrated a thrombin-dependent interaction of p85 alpha with a proline-rich sequence of the tyrosine-phosphorylated cytoskeletal focal adhesion kinase, p125FAK. In addition, we show that PtdIns 3-kinase is significantly activated by the p125FAK proline-rich sequence binding to the src homology 3 domain of p85 alpha subunit. This interaction may represent a new mechanism for PtdIns 3-kinase activation at very specific areas of the cell and indicates that the focal contact-like areas linked to the actin filaments play a critical role in signaling events that occur upon ligand engagement of alpha IIb/beta 3 integrin and platelet aggregation evoked by thrombin.  相似文献   

19.
Insulin-like growth factor-I (IGF-I) stimulates the production of 3-inositides and markedly increases the phosphatidylinositol 3-kinase activity that is immunoprecipitated by anti-phosphotyrosine antibodies, a portion of which is also associated with the IGF-I receptor. In this study, recombinant p85, the regulatory subunit of phosphatidylinositol 3-kinase, and fusion proteins containing various subdomains were used to investigate the association of p85 with the IGF-I receptor and to demonstrate that p85 is a direct in vitro substrate of the IGF-I receptor kinase. Solubilized IGF-I receptor was immobilized on antireceptor antibody-agarose beads. Following in vitro receptor phosphorylation and incubation with cell lysate, immobilized receptor became associated with phosphatidylinositol 3-kinase activity and with protein bands with molecular masses of 85 and 110 kDa, which correspond to the known molecular masses of the subunits of phosphatidylinositol 3-kinase. These associations were inhibited by the addition of recombinant intact p85 or SH2-containing fusion proteins, but not by fusion proteins containing its SH3 domain or breakpoint cluster homology region. A fusion protein containing the SH2 domains of Ras GTPase-activating protein also inhibited the association of phosphatidylinositol 3-kinase activity with immobilized IGF-I receptor, although less effectively than p85, whereas a similar construct containing the SH2 domain of pp60src was without effect. When immobilized phosphorylated IGF-I receptor was incubated with intact p85 or the SH2-containing fusion proteins, it became associated with and phosphorylated these proteins. These results demonstrate that at least in vitro, a tight association occurs between phosphorylated IGF-I receptor and phosphatidylinositol 3-kinase, that the region of phosphatidylinositol 3-kinase that contains its SH2 domains is directly involved in this association, and that this region is a direct substrate for IGF-I receptor tyrosine kinase. Furthermore, these results suggest that Ras GTPase-activating protein can also interact with the IGF-I receptor and that different SH2 domain-containing proteins interact with the IGF-I receptor with widely differing affinities.  相似文献   

20.
A prominent tyrosine phosphorylated protein of 85 kDa (p85) was detected in highly proliferative sublines derived from the Jurkat T cell leukemia. We undertook a study to characterize the identity of this protein and its possible role in the hyperproliferative phenotypes observed. Using immunoblot and immunoprecipitation techniques, this protein was characterized as the p85 regulatory subunit of phosphatidylinositol 3-kinase. Cell proliferation and p85 tyrosine phosphorylation was not affected by tyrphostin AG-490, an inhibitor of Jak kinases, wortmannin or LY294002, inhibitors of the activity of the catalytic phosphatidylinositol 3-kinase subunit. Herbimycin-A and PPI, inhibitors of src-like protein tyrosine kinases, and genistein, a general tyrosine kinase inhibitor, inhibited p85 tyrosine phosphorylation and induced cell death in the sublines. PD98059, an inhibitor of Mek, inhibited cell growth of the sublines, but not that of the parental cells. It was concluded that tyrosine phosphorylation of p85 is associated with highly proliferative tumoral phenotypes, at least in T cell leukemias, independent of the phosphatidylinositol 3-kinase activity of the catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号