首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-2, a human pathogen that causes acquired immunodeficiency syndrome, is distinct from the more prevalent HIV-1 in several features including its evolutionary history and certain aspects of viral replication. Like other retroviruses, HIV-2 packages two copies of full-length viral RNA during virus assembly and efficient genome encapsidation is mediated by the viral protein Gag. We sought to define cis-acting elements in the HIV-2 genome that are important for the encapsidation of full-length RNA into viral particles. Based on previous studies of murine leukemia virus and HIV-1, we hypothesized that unpaired guanosines in the 5′ untranslated region (UTR) play an important role in Gag:RNA interactions leading to genome packaging. To test our hypothesis, we targeted 18 guanosines located in 9 sites within the HIV-2 5′ UTR and performed substitution analyses. We found that mutating as few as three guanosines significantly reduce RNA packaging efficiency. However, not all guanosines examined have the same effect; instead, a hierarchical order exists wherein a primary site, a secondary site, and three tertiary sites are identified. Additionally, there are functional overlaps in these sites and mutations of more than one site can act synergistically to cause genome packaging defects. These studies demonstrate the importance of specific guanosines in HIV-2 5′UTR in mediating genome packaging. Our results also demonstrate an interchangeable and hierarchical nature of guanosine-containing sites, which was not previously established, thereby revealing key insights into the replication mechanisms of HIV-2.  相似文献   

2.
The Gag polyprotein is the major structural protein of human immunodeficiency virus-1 (HIV-1) constituting the viral core. Between translation on cytoplasmic polysomes and assembly into viral particles at the plasma membrane, it specifically captures the RNA genome of the virus through binding RNA structural motifs (packaging signals -Psi) in the RNA. RNA is believed to be a structural facilitator of Gag assembly. Using a combined approach of immunofluorescence detection of Gag protein and in situ hybridisation detection of viral genomic RNA, we demonstrate that Gag protein colocalises early after expression with Psi+ RNA in the perinuclear region and also colocalises with centrioles. Colocalised RNA and protein subsequently traffic through the cytoplasm to the plasma membrane of the cell. Gag expressed from Psi- RNA diffuses throughout the cell. It is not found at centrioles and shows delayed cytoplasmic colocalisation with the RNA genome. RNA capture through Psi does not influence binding of Gag to microfilaments. Gag does not bind to tubulin during export. The presence of the packaging signal may coordinate capture of Psi+ RNA by Gag protein at the centrosome followed by their combined transport to the site of budding. HIV-1 Psi thus acts as a subcellular localisation signal as well as a high-affinity-binding site for Gag.  相似文献   

3.
《Biophysical journal》2021,120(21):4874-4890
During HIV-1 assembly, the viral Gag polyprotein specifically selects the dimeric RNA genome for packaging into new virions. The 5′ untranslated region (5′UTR) of the dimeric genome may adopt a conformation that is optimal for recognition by Gag. Further conformational rearrangement of the 5′UTR, promoted by the nucleocapsid (NC) domain of Gag, is predicted during virus maturation. Two 5′UTR dimer conformations, the kissing dimer (KD) and the extended dimer (ED), have been identified in vitro, which differ in the extent of intermolecular basepairing. Whether 5′UTRs from different HIV-1 strains with distinct sequences have access to the same dimer conformations has not been determined. Here, we applied fluorescence cross-correlation spectroscopy and single-molecule Förster resonance energy transfer imaging to demonstrate that 5′UTRs from two different HIV-1 subtypes form (KDs) with divergent stabilities. We further show that both 5′UTRs convert to a stable dimer in the presence of the viral NC protein, adopting a conformation consistent with extensive intermolecular contacts. These results support a unified model in which the genomes of diverse HIV-1 strains adopt an ED conformation.  相似文献   

4.
Full-length unspliced genomic RNA plays critical roles in HIV replication, serving both as mRNA for the synthesis of the key viral polyproteins Gag and Gag-Pol and as genomic RNA for encapsidation into assembling viral particles. We show that a second gag mRNA species that differs from the genomic RNA molecule by the absence of an intron in the 5′ untranslated region (5′UTR) is produced during HIV-2 replication in cell culture and in infected patients. We developed a cotransfection system in which epitopically tagged Gag proteins can be traced back to their mRNA origins in the translation pool. We show that a disproportionate amount of Gag is translated from 5′UTR intron-spliced mRNAs, demonstrating a role for the 5′UTR intron in the regulation of gag translation. To further characterize the effects of the HIV-2 5′UTR on translation, we fused wild-type, spliced, or mutant leader RNA constructs to a luciferase reporter gene and assayed their translation in reticulocyte lysates. These assays confirmed that leaders lacking the 5′UTR intron increased translational efficiency compared to that of the unspliced leader. In addition, we found that removal or mutagenesis of the C-box, a pyrimidine-rich sequence located in the 5′UTR intron and previously shown to affect RNA dimerization, also strongly influenced translational efficiency. These results suggest that the splicing of both the 5′UTR intron and the C-box element have key roles in regulation of HIV-2 gag translation in vitro and in vivo.  相似文献   

5.
6.
Sequences required for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genome RNA into virus particles were identified. Deletion of 19 base pairs between the 5' long terminal repeat and the gag gene initiation codon of HIV-1 resulted in a virus markedly attenuated for replication in human T lymphocytes. The mutant virus was characterized by nearly wild-type ability to encode viral proteins and to produce virion particles. The mutant virions exhibited a significant reduction in the content of HIV-1-specific RNA. These results identify an important component of the HIV-1 packaging signal.  相似文献   

7.
Zhou Y  Rong L  Lu J  Pan Q  Liang C 《Journal of virology》2008,82(12):5683-5692
The assembly of human immunodeficiency virus type 1 (HIV-1) particles is driven by viral Gag protein. This function of Gag not only benefits from its self-multimerization property but also depends on its interaction with a number of cellular factors such as TSG101 and ALIX/AIP1 that promote virus budding and release from cell surfaces. However, interaction with Gag also allows some cellular factors such as APOBEC3G and Trim5alpha to access viral replication machinery and block viral replication. In this study, we report a new HIV-1 Gag-binding factor named insulin-like growth factor II mRNA binding protein 1 (IMP1). Gag-IMP1 interaction requires the second zinc finger of the nucleocapsid (NC) domain of Gag and the KH3 and KH4 domains of IMP1. A fourfold reduction of HIV-1 infectivity was seen with overexpression of the wild-type IMP1 and its mutant that is able to interact with Gag but not with overexpression of IMP1 mutants exhibiting Gag-binding deficiency. The decreased viral infectivity was further shown as a result of diminished viral RNA packaging, abrogated Gag processing on the cellular membranes, and impeded maturation of virus particles. Together, these results demonstrate that IMP1 interacts with HIV-1 Gag protein and is able to block the formation of infectious HIV-1 particles.  相似文献   

8.
9.
10.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles is initiated in the cytoplasm by the formation of a ribonucleoprotein complex comprising the dimeric RNA genome and a small number of viral Gag polyproteins. Genomes are recognized by the nucleocapsid (NC) domains of Gag, which interact with packaging elements believed to be located primarily within the 5'-leader (5'-L) of the viral RNA. Recent studies revealed that the native 5'-L exists as an equilibrium of two conformers, one in which dimer-promoting residues and NC binding sites are sequestered and packaging is attenuated, and one in which these sites are exposed and packaging is promoted. To identify the elements within the dimeric 5'-L that are important for packaging, we generated HIV-1 5'-L RNAs containing mutations and deletions designed to eliminate substructures without perturbing the overall structure of the leader and examined effects of the mutations on RNA dimerization, NC binding, and packaging. Our findings identify a 159-residue RNA packaging signal that possesses dimerization and NC binding properties similar to those of the intact 5'-L and contains elements required for efficient RNA packaging.  相似文献   

11.
Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2 proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins that specifically recognize stem-loop motifs in the viral genomes, an assay termed single virion analysis. These studies revealed that >90% of the HIV-2 particles contained viral RNAs and that RNAs derived from different viruses were copackaged frequently. Furthermore, the frequencies of heterozygous particles in the viral population could be altered by changing a 6-nucleotide palindromic sequence at the 5'-untranslated region of the HIV-2 genome. This finding indicates that selection of copackaging RNA partners occurs prior to encapsidation and that HIV-2 Gag proteins primarily package one dimeric RNA rather than two monomeric RNAs. Additionally, single virion analyses demonstrated a similar RNA distribution in viral particles regardless of whether both viruses had a functional gag or one of the viruses had a nonfunctional gag, providing further support for the trans-packaging hypothesis. Together, these results revealed mechanisms of HIV-2 RNA packaging that are, contrary to previous studies, in many respects surprisingly similar to those of HIV-1.  相似文献   

12.
Song R  Kafaie J  Laughrea M 《Biochemistry》2008,47(10):3283-3293
The HIV-1 genome consists of two identical RNAs that are linked together through noncovalent interactions involving nucleotides from the 5' untranslated region (5' UTR) of each RNA strand. The 5' UTR is the most conserved part of the HIV-1 RNA genome, and its 335 nucleotide residues form regulatory motifs that mediate multiple essential steps in the viral replication cycle. Here, studying the effect of selected mutations both singly and together with mutations disabling SL1 (SL1 is a 5' UTR stem-loop containing a palindrome called the dimerization initiation site), we have done a rather systematic survey of the 5' UTR requirements for full genomic RNA dimerization in grown-up (i.e., predominantly >/=10 h old) HIV-1 viruses produced by transfected human and simian cells. We have identified a role for the 5' transactivation response element (5' TAR) and a contribution of a long-distance base pairing between a sequence located at the beginning of the U5 region and nucleotides surrounding the AUG Gag initiation codon. The resulting intra- or intermolecular duplex is called the U5-AUG duplex. The other regions of the 5' UTR have been shown to play no systematic role in genomic RNA dimerization, except for a sequence located around the 3' end of a large stem-loop enclosing the primer binding site, and the well-documented SL1. Our data are consistent with a direct role for the 5' TAR in genomic RNA dimerization (possibly via a palindrome encompassing the apical loop of the 5' TAR).  相似文献   

13.
14.
P P Lee  M L Linial 《Journal of virology》1994,68(10):6644-6654
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.  相似文献   

15.
The major RNA binding region of the HIV-1 Gag polyprotein is the nucleocapsid (NC) domain, which is responsible for the specific capture of the genomic RNA genome during viral assembly. The Gag polyprotein has other RNA chaperone functions, which are mirrored by the isolated NC protein after physiological cleavage from Gag. Gag, however, is suggested to have superior nucleic acid chaperone activity. Here we investigate the interaction of Gag and NC with the core RNA structure of the HIV-1 packaging signal (Ψ), using 2-aminopurine substitution to create a series of modified RNAs based on the Ψ helix loop structure. The effects of 2-aminopurine substitution on the physical and structural properties of the viral Ψ were characterized. The fluorescence properties of the 2-aminopurine substitutions showed features consistent with the native GNAR tetraloop. Dissociation constants (K(d)) of the two viral proteins, measured by fluorescence polarization (FP), were similar, and both NC and Gag affected the 2-aminopurine fluorescence of bases close to the loop binding region in a similar fashion. However, the influence of Gag on the fluorescence of the 2-aminopurine nucleotides at the base of the helix implied a much more potent helix destabilizing action on the RNA stem loop (SL) versus that seen with NC. This was further supported when the viral Ψ SL was tagged with a 5' fluorophore and 3' quencher. In the absence of any viral protein, minimal fluorescence was detected; addition of NC yielded a slight increase in fluorescence, while addition of the Gag protein yielded a large change in fluorescence, further suggesting that, compared to NC, the Gag protein has a greater propensity to affect RNA structure and that Ψ helix unwinding may be an intrinsic step in RNA encapsidation.  相似文献   

16.
Translation of the full-length messenger RNA (mRNA) of the human immunodeficiency virus type 1 (HIV-1) generates the precursor of the viral enzymes via a programmed -1 ribosomal frameshift. Here, using dual-luciferase reporters, we investigated whether the highly structured 5' untranslated region (UTR) of this mRNA, which interferes with translation initiation, can modulate HIV-1 frameshift efficiency. We showed that, when the 5' UTR of HIV-1 mRNA occupies the 5' end of the reporter mRNA, HIV-1 frameshift efficiency is increased about fourfold in Jurkat T-cells, compared with a control dual-luciferase reporter with a short unstructured 5' UTR. This increase was related to an interference with cap-dependent translation initiation by the TAR-Poly(A) region at the 5' end of the messenger. HIV-1 mRNA 5' UTR also contains an internal ribosome entry site (IRES), but we showed that, when the cap-dependent initiation mode is available, the IRES is not used or is weakly used. However, when the ribosomes have to use the IRES to translate the dual-luciferase reporter, the frameshift efficiency is comparable to that of the control dual-luciferase reporter. The decrease in cap-dependent initiation and the accompanying increase in frameshift efficiency caused by the 5' UTR of HIV-1 mRNA is antagonized, in a dose-dependent way, by the Tat viral protein. Tat also stimulates the IRES-dependent initiation and decreases the corresponding frameshift efficiency. A model is presented that accounts for the variations in frameshift efficiency depending on the 5' UTR and the presence of Tat, and it is proposed that a range of frameshift efficiencies is compatible with the virus replication.  相似文献   

17.
Encapsidation of HIV-1 genomic RNA is mediated by specific interactions between the RNA packaging signal and the Gag protein. During maturation of the virion, the Gag protein is processed into smaller fragments, including the nucleocapsid (NC) domain which remains associated with the viral genomic RNA. We have investigated the binding of glutathione- S -transferase (GST) Gag and NC fusion proteins from HIV-1, to the entire HIV-1 and -2 leader RNAencompassing the packaging signal. We have mapped the binding sites at conditions where only about two complexes are formed and find that GST-Gag and GST-NC fusion proteins bind specifically to discrete sites within the leader. Analysis of the HIV-1 leader indicated that GST-Gag strongly associates with the PSI stem-loop and to a lesser extent with regions near the primer binding site. GST-NC binds the same regions but with reversed preferences. The HIV-1 proteins also interact specifically with the 5'-leader of HIV-2 and the major site of interaction mapped to a stem-loop, with homology to the HIV-1 PSI stem-loop structure. The different specificities of Gag and NC may reflect functionally distinct roles in the viral replication, and suggest that the RNA binding specificity of NC is modulated by its structural context.  相似文献   

18.
A unique feature of retroviruses is the packaging of two copies of their genome, noncovalently linked at their 5' ends. In vitro, dimerization of human immunodeficiency virus type 2 (HIV-2) RNA occurs by interaction of a self-complementary sequence exposed in the loop of stem-loop 1 (SL-1), also termed the dimer initiation site (DIS). However, in virions, HIV-2 genome dimerization does not depend on the DIS. Instead, a palindrome located within the packaging signal (Psi) is the essential motif for genome dimerization. We reported previously that a mutation within Psi decreasing genome dimerization and packaging also resulted in a reduced proportion of mature particles (A. L'Hernault, J. S. Greatorex, R. A. Crowther, and A. M. Lever, Retrovirology 4:90, 2007). In this study, we investigated further the relationship between HIV-2 genome dimerization, particle maturation, and infectivity by using a series of targeted mutations in SL-1. Our results show that disruption of a purine-rich ((392)-GGAG-(395)) motif within Psi causes a severe reduction in genome dimerization and a replication defect. Maintaining the extended SL-1 structure in combination with the (392)-GGAG-(395) motif enhanced packaging. Unlike that of HIV-1, which can replicate despite mutation of the DIS, HIV-2 replication depends critically on genome dimerization rather than just packaging efficiency. Gag processing was altered in the HIV-2 dimerization mutants, resulting in the accumulation of the MA-CA-p2 processing intermediate and suggesting a link between genome dimerization and particle assembly. Analysis of revertant SL-1 mutant viruses revealed that a compensatory mutation in matrix (70TI) could rescue viral replication and partially restore genome dimerization and Gag processing. Our results are consistent with interdependence between HIV-2 RNA dimerization and the correct proteolytic cleavage of the Gag polyprotein.  相似文献   

19.
Incorporation of Vpr into human immunodeficiency virus type 1 (HIV-1) virions is mediated by the Gag protein, independently of other viral components. We have coexpressed Vpr and Gag constructs in a vaccinia virus expression system in order to map the region of Gag involved in Vpr packaging. Deletion of the carboxyl-terminal p6 region of Gag impaired the ability of Gag to package Vpr. To confirm the role of p6 in Vpr packaging, Rous sarcoma virus (RSV)-HIV chimeras containing HIV-1 p6 were constructed. Although RSV Gag does not package Vpr into virus particles, a chimera containing HIV-1 p6 is sufficient for Vpr incorporation. To map the region of p6 involved in Vpr packaging, a series of p6 point mutations and deletion mutations was analyzed. Mutations in the N-terminal p6 proline-rich domain, for which preliminary evidence shows a marked decrease in virion incorporated RNA, did not affect Vpr incorporation. Deletion of residues 1 to 31 of HIV-1 p6 did not affect Vpr packaging, but residues 35 to 47, including an (LXX)4 domain, were required for Vpr incorporation into virus particles.  相似文献   

20.
J Luban  S P Goff 《Journal of virology》1994,68(6):3784-3793
We previously identified blocks of sequence near the 5' end of the human immunodeficiency virus (HIV-1) genome which conferred on RNA the ability to bind specifically to the HIV-1 Gag polyprotein, Pr55gag (J. Luban and S. P. Goff, J. Virol. 65:3203-3212, 1991; R. Berkowitz, J. Luban, and S. P. Goff, J. Virol. 67:7190-7200, 1993). Here we report the use of an RNase protection assay to quantify the effect of deletion of these sequences on RNA packaging into virions. First, we demonstrated with wild-type HIV-1 sequences that in comparison with spliced viral RNA, full-length viral genomic RNA is enriched 20-fold in virions. A previously described mutation with deletion of sequences between the major splice donor and the first codon of gag (A. Lever, H. Gottlinger, W. Haseltine, and J. Sodroski, J. Virol. 63:4085-4087, 1989) disrupted these ratios such that different HIV-1 RNA forms were packaged in direct proportion to cytoplasmic concentrations. The effect of deletion mutations preceding and within gag coding sequence on packaging was then tested in competition with RNAs containing wild-type packaging sequences. Using this system, we were able to demonstrate significant effects on packaging of RNAs with mutations immediately preceding the first codon of gag. The greatest reduction in packaging was seen with RNAs lacking the first 40 nucleotides of gag coding sequence, although sequences more 3' had slight additional effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号