首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Charasomes, complex membrane structures, were found along the longitudinal walls of internodal and lateral branch cells ofChara corallina andC. braunii, but not along their transverse walls or in other cell types. Charasome-complexes were larger and more numerous in the lateral branch cells than in internodal cells. InC. corallina, a dioecious species, especially large elaboration of charasome material occurs in the lateral branch cells of the female plant, sometimes reaching a cross-sectional width which is as great as that of the adjacent cell wall. Chara internodes transport hydroxyl (OH) out of the cell and bicarbonate (HCO3 ) into the cell. Spatial distribution of charasomes along the cell was examined with respect to these transport phenomena, which occur at specific identifiable regions along the cell. Charasome-complexes were always found in regions in which HCO3 transport occurs but were often fewer, reduced in size or absent in areas of OH efflux.Nitella flexilis exhibited similar patterns of OH and HCO3 transport along the cell; however, there was a complete absence of charasomes. Ultrastructural examinations onNitella translucens indicated that charasomes were also absent in this species. The observation that charasomes are present in both transport regions ofChara but are totally lacking in the twoNitella spp. indicates that the charasome-complex is not involved in transport of either substance. Other possible functions for the charasomes, including a role in osmoregulation, are discussed.Charasome substructure is the same in bothChara species, consisting of a mass of short (50 nm average length) anastomosing tubules (30 nm average diameter) derived from the plasmalemma. The interior of the tubules is open to the cytoplasm while the area surrounding the tubules is ultimately open to the wall and thus can be considered to be wall space. Charasomes are quite variable in size and shape, but are roughly globular, with the bulk of the structure projecting into the cell cytoplasm. Tubular components of the charasome were sometimes seen to extend into the microfibrillar wall matrix. A three dimensional model of the charasome-complex presented details the great complexity of this membrane system.  相似文献   

2.
Summary We report on an unusual phenomenon which occurs in some characean algae as a normal plasma membrane activity and also in association with charasome formation. The phenomenon of formation of coated invaginations of the plasma membrane was observed in twoChara and 6Nitella species. These invaginations are coated on their cytoplasmic surface, are 50–60 nm in diameter and rarely exceed 60 nm in length. They are abundant in the young cells ofChara andNitella and also occur in mature cells, but at a lower frequency.N. translucent is an exception in that coated invaginations were few in the young cells and absent in mature cells. Coated vesicles (50–60 nm diameter) were closely associated with these invaginations. Our observations suggest the vesicles may be derived from the invaginations by endocytosis.A close relationship was noted between the development of charasomes (plasmalemma modifications) and coated invaginations. Numerous coated invaginations are seen along the membranes of young charasomes; these invaginations appear to be associated with growth of the charasomes. Coated vesicles were not associated with the coated invaginations of the charasome membrane. The tubular network of cytoplasm and wall space seen in the mature charasome may be formed by fusion of coated invaginations of the developing charasomes, leaving cytoplasmic strands between the fused portions. Coated invaginations were not present along charasomes of the mature cells.  相似文献   

3.
Summary Internodal cells ofChara, grown in culture either at pH 5.7, 6.5 or 7.5, were studied to determine their chloride influx capability, the quantitative aspects of charasome morphology and the degree to which these two parameters could be correlated. In cells grown at pH 5.7 the charasomes were relatively small, were widely spaced on the plasma membrane, and contributed only a 0.6% increase to the surface area of the plasma membrane in the acid region of the cell. In contrast, the charasome membrane surface area of cells grown at pH 7.5 had increased × 19, the density of charasomes on the cell surface increased × 42, thus producing a × 3.57 increase in the acid region plasma membrane surface area. Chloride influx in cells grown at pH 7.5 was × 8.7–12.7 greater than in cells grown at pH 5.7. Cells that had been starved of chloride exhibited a × 2.4 average increase in the rate of chloride influx. Our observations establish the existence of a positive correlation between the rate of chloride influx and the increase in membrane surface area due to charasomes, although other factors, such as the effect of pH on transport-related enzymes, and the effect of charasome structure on chemical equilibria, may also be of importance.  相似文献   

4.
Summary Cells ofChara corallina grown under high CO2 culture conditions were able to utilize exogenous HCO3 to give appreciable rates of net photosynthesis. Since these rates of photosynthesis could be detected within 10 min of being transferred from high-CO2 to normal HCO3 (pH 8.2) culture conditions, it would appear that the HCO3 -accumulating system ofChara is not fully repressed under these high CO2 culture conditions. The membrane potential of these cells also responded to light/dark treatments in a manner consistent with the operation of a HCO3 acquisition system. With prolonged exposure (2–6 days) to CPW/B, net photosynthesis continued to increase towards the expected control rate and, in parallel, the electrical responses elicited by light/dark treatments converged towards those obtained on control (CPW/B-grown)Chara cells. Charasomes were absent in CPW/CO2-grownChara, but redeveloped in mature cells once the culture was returned to CPW/B conditions; a minimum period of 7 days in CPW/B was required before charasomes were detected in tissue examined in the transmission electron microscope. As the above-detailed physiological and electrophysiological features were observed with both axial and whorl cells ofChara in which charasomes were completely absent, we conclude that this specialized organelle is not an essential component for photosynthetic utilization of exogenous HCO3 in this species.Abbreviations CPW/B Chara pond water containing 1.0 mM NaHCO3, pH8.2 - CPW/CO2 Chara pond water containing dissolved CO2, pH 5.5 - DIC dissolved in organic carbon - D.H. dark-induced membrane hyperpolarization - L.H. light-induced membrane hyperpolarization - TEM transmission electron microscopy  相似文献   

5.
Chloride transport, presumably via a Cl-2H+ co-transport system, was investigated in Chara corallina. At pH 6.5, the control influx (3.1 picomoles per centimeter2 per second) was stimulated 4-fold by an 18-hour Cl starvation. The stimulated influx was inhibited to 4.7 picomoles per centimeter2 per second after a 60-minute pre-exposure to 0.5 millimolar 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS). This compares with a nonsignificant inhibition of the control under similar conditions. At 2 millimolar DIDS, both stimulated and control influx were inhibited to values of 1.1 and 2.2 picomoles per centimeter2 per second, respectively; in all cases, DIDS inhibition was reversible. Over the pH range 4.8 to 8.5, the control and DIDS-inhibited influx showed only slight pH sensitivity; in contrast, the stimulated flux was strongly pH dependent (pH 6.5 optimum). Inasmuch as changes in pH alter membrane potential, N-ethylmaleimide was used to depolarize the membrane; this had no effect on Cl influx. A transient depolarization of the membrane (about 20 millivolts) was observed on restoration of Cl to starved cells. The membrane also depolarized transiently when starved cells were exposed to 0.5 millimolar DIDS, but the depolarization associated with Cl restoration was inhibited by a 40-minute pretreatment with DIDS. Exposure of control cells to DIDS caused only a small hyperpolarization (about 7 millivolts). DIDS may have blocked Cl influx by inhibiting the putative plasmalemma H+-translocating ATPase. Histochemical studies on intact cells revealed no observable effect of DIDS on plasmalemma ATPase activity. However, DIDS application after fixation resulted in complete inhibition of ATPase activity.

The differential sensitivity of the stimulated and control flux to inhibition by DIDS may reflect an alteration of transport upon stimulation, but could also result from differences in pretreatment. The stimulated cells were pretreated with DIDS in the absence of Cl, in contrast to the presence of Cl during pretreatment of controls. The differential effect could result from competition between Cl and DIDS for a common binding site. Our histochemical ATPase results indicate that Cl transport and membrane ATPase are separate systems, and the latter is only inhibited by DIDS from the inside of the cell.

  相似文献   

6.
The characteristics of transmembrane transport of 14C-labelled indol-3yl-acetic acid ([1-14C]IAA) were compared in Chlorella vulgaris Beij., a simple unicellular green alga, and in Chara vulgaris L., a branched, multicellular green alga exhibiting axial polarity and a high degree of cell and organ specialization. In Chara thallus cells, three distinguishable trans-plasmamembrane fluxes contributed to the net uptake of [1-14C]-IAA from an external solution, viz.: a non-mediated, pH-sensitive influx of undissociated IAA (IAAH); a saturable influx of IAA; and a saturable efflux of IAA. Both saturable fluxes were competitively inhibited by unlabelled IAA. Association of [3H]IAA with microsomal preparations from Chara thallus tissue was competitively inhibited by unlabelled IAA. Results indicated that up-take carriers occurred in the membranes at a much higher density than efflux carriers. The efflux component of IAA net uptake by Chara was not affected by several phytotropins (N-1-naphthylphthalmic acid, NPA; 2-(1-pyrenoyl)benzoic acid; and 5-(2-carboxyphenyl)-3-phenylpyrazole), which are potent non-competitive inhibitors of specific auxin-efflux carriers in more advanced plant groups, and no evidence was found for a specific association of [3H]NPA with Chara microsomal preparations. It was concluded that Chara lacked phytotropin receptors. Net uptake of [1-14C]IAA also was unaffected by 2,3,5-triiodobenzoic acid except at concentrations ( 10–1 mol · m–3) high enough to depress cytoplasmic pH (determined by uptake of 5,5-dimethyloxazolidine-2,4-dione). Chlorella cells accumulated [1-14C]IAA from an external solution by pH-sensitive diffusion of IAA across the plasma membrane and anion (IAA) trapping, but no evidence was found in Chlorella for the occurrence of IAA carriers. These results indicate that carrier systems capable of mediating the transmembrane transport of auxins appeared at a very early stage in the evolution of green plants, possibly in association with the origin of a differentiated, multicellular plant body. Phytotropin receptors evolved independently of the carriers.Abbreviations CPP 5-(2-carboxyphenyl)-3-phenylpyrazole - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid We thank the Nuffield Foundation for the award of an Undergraduate Research Bursary to J.E.D.-F., Dr. G.F. Katekar, C.S.I.R.O., Canberra, Australia for generous gifts of phytotropins, and Mrs. R.P. Bell for technical support.  相似文献   

7.
William J. Lucas 《Planta》1982,156(2):181-192
Electrophysiological measurements on internodal cells of the alga, Chara corallina Klein ex Willd., em. R.D.W., showed that the potential across the plasmalemma was sensitive to the level of exogenous HCO 3 - . In alkaline solutions (pH 8) the membrane potential depolarized by 50–75 mV when exogenous HCO 3 - was removed from the bathing medium. In the presence of exogenous HCO 3 - , the membrane potential rapidly hyperpolarized when the cell was given a brief dark treatment; in the light the potential was approx.-240 mV; after the cell had been in the dark for 3–6 min the potential was -330 to -350 mV. In the absence of exogenous HCO 3 - the potential only hyperpolarized slowly and to a much smaller extent when cells were placed in the dark. Upon re-illuminating the cell, the potential further hyperpolarized, transiently, and then rapidly depolarized back towards the light-adapted value. (These responses were only obtained when cells were not perturbed by microelectrode insertion into the vacuole.) Analysis of membrane potential and experiments with the extracellular vibrating electrode indicated a high level of correlation between the light- and dark-induced changes in membrane potential and extracellular currents. However, when experiments were conducted in HCO 3 - -free media that contained 1.0 mM phosphate buffer, pH 8, it was found that the dark-induced hyperpolarization of the membrane potential and the light-dependent extracellular currents could be maintained in the absence of exogenous HCO 3 - . These results are interpreted in terms of two basic models by which internodal cells of C. corallina may acquire exogenous HCO 3 - for photosynthesis. They are consistent with HCO 3 - being transported across the plasmalemma via an electrically neutral HCO 3 - –H+ cotransport system. The hyperpolarizing response is thought to be the consequence of the operation of an electrogenic H+-translocating ATPase that has a transport stoichiometry of 1 H+ per ATP hydrolyzed.Abbreviation CPW/B artificial Chara pond water containing exogenous bicarbonate  相似文献   

8.
A new vibrating probe-current voltage measuring system is described which enabled us to detect current-voltage curves in the acid and alkaline regions of Chara corallina (Klein ex Willd., em. R.D.W.). Extracellular current analysis, performed before and after the measurement of a current-voltage curve, established that the voltage-clamp protocol had no significant effect on the transport function of the plasma membrane, provided no action potential was triggered. This validated experimental system was then used to determine the reversal potential (- 450 mV) and the stoichiometry (1 H+:ATP hydrolyzed) of the Chara H+-ATPase, which dominates the acid regions. Current-voltage curves of the acid regions almost saturated at values close to the resting potential, in the absence of exogenous buffer. Introduction of artificial buffers and-or HCO 3 - shifted the reversal potential of this area to more positive values. Furthermore, it was shown that the reversal potential (-120 mV) of the extracellular current in the alkaline band (passive H+ channel) coincided with the threshold for the action potential. We propose that the action potential functions as a component of the spatial control system in the Chara cell.Abbreviations CPW artificial Chara pond water - CPW/B CPW with 1 mM NaHCO3 This work was supported by National Science Foundation grant No. DCB-88-16077 and a matching equipment grant provided by the University of California, Davis, to W.J.L. We thank Jim Haudenshield for his help with some of the illustrations and Lesley Randall for the technical drawings. Special thanks are due to Wes Tallon of the Physical Plant Machine Shop, University of California, Davis for the fabrication of the new vibrating-probe-voltage-clamp system. The Industrial Applications Section of Olympus provided considerable assistance in terms of the development of an appropriate high-resolution fibre-optics microscope.  相似文献   

9.
Uptake ofl-[35S]cysteic acid (L-CA) in rat synaptic membrane vesicles was investigated. Preincubation with either 10 mMl-glutamic acid (L-Glu), 25 mM L-CA, 10 mMdl-homocysteic acid, or 25 mMdl-2-amino-4-phosphonobutyrate on membrane vesicles enhanced L-[35S]CA and L-[3H]Glu uptake. Na+ (5 mM) and omission of Cl from the assay medium decreased L-[35S]CA uptake into both 10 mM L-Glu-loaded and non-loaded membrane vesicles. The anion transport blockers, 4-acetamide-4-isothiocyano-2,2-disulfonic acid stibene (SITS) and 4,4-diisothiocyano-2,2-disulfonic acid stilbene (DIDS), inhibited L-[35S]CA uptake in a dose-dependent manner. The maximal uptake rate for L-[35S]CA was decreased by 50 M SITS, while the apparent Km value of L-CA was not changed. SITS increased the EC50 value of Cl for L-[35S]CA uptake from 5 mM to 10 mM with reduction of the maximal effect. These results suggested that L-[35S]CA uptake into synaptic membrane vesicles was mediated by a SITS-sensitive hetero-exchange transport with non-labeled substrates.Abbreviations SITS 4-Acetamide-4-isothiocyano-2,2-disulfonic acid stilbene - DIDS 4,4-Diisothiocyano-2,2-disulfonic acid stilbene - CA Cysteic acid - APB 2-Amino-4-phosphonobutyrate - CSA Cysteine sulfinic acid - EGTA Ethyleneglycol bis(aminoethylether) tetraacetate - GABA -Aminobutyric acid  相似文献   

10.
I. Struve  U. Lüttge 《Planta》1987,170(1):111-120
Membrane vesicles were isolated from mesophyll cells of Mesembryanthemum crystallinum in the C3 state and in the crassulacean acid metabolism (CAM) state. The distribution of ATP-hydrolysis and H+-transport activities, and the activities of hydroxypyruvate reductase and Antimycin-insensitive cytochrome-c-reductase on continuous sucrose gradients was studied. For isolations carried out routinely a discontinuous sucrose gradient (24%/37%/50%) was used. Nitrate-sensitive ATP-hydrolysis and H+-transport activities increased several-fold during the transition from C3 photosynthesis to CAM. Nitrate-sensitive ATPase showed a substrate preference for ATP with an apparent Km (MgATP2-) of 0.19–0.37 mM. In both C3 and CAM states the ATPase showed a concentration-dependent stimulation by the anions chloride and malate. However, the pH optima of the two states were different: the ATPase of C3- M. crystallinum had an optimum of pH 7.4 and that of CAM-M. crystallinum an optimum of pH 8.4. The optical probe oxonol-VI was used to demonstrate the formation of MgATP2--dependent electric-potential gradients in tonoplast vesicles.Abbreviations Bistris-Pronane 1,3-bis [tris(hydroxymethyl)-methylaminol propane - CAM Crassulacean acid metabolism - DIDS 4,4-dilsothiocyano-2,2-stilbene disulfonic acid: - DTT dithiothreitol - ER endoplasmic reticulum - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - HPR hydroxypyruvate reductase - IDPase inosine 5-diphosphatase - OX-VI oxonol VI - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

11.
The disulfonic stilbene (4-acetamido-4′-isothiocyano-2,2′-disulfonic stilbene) is found to be more potent than acetazolamide as an anion transport inhibitor in the turtle bladder, but less potent than acetazolamide as a carbonic anhydrase inhibitor. The anion-dependent (HCO3-−, Cl) moeity of the short-circuiting current is eliminated by 4-acetamido-4′-isothiocyano-2,2′-disulfonic stibene, but only after its addition to the serosal bathing fluid. Whereas 4-acetmido-4′-isothiocyano-2,2′-disulfonic stilbene has no effect om Na+transport across the bladder, it is more potent than ouabain as an inhibitor of microsomal (Na++K+)-ATPase of both turtle bladder and eel electric organ.  相似文献   

12.
Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including 22Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 M N,N-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mes 2-(N-morpholino)ethanesulphonic acid - Mops 3(N-morpholino)propanesulphonic acid - Taps tris(hydroxymethyl)methylaminopropanesulphonic acid  相似文献   

13.
A fluorescence method for the direct measurement of Cl- transport in isolated tonoplast vesicles is described. This technique utilises the Cl--sensitive fluorescent compound, 6-methoxy-1-(3-sulfonatopropyl)quinolinium (SPQ). This is a water-soluble compound with excitation and emission wavelengths of 350 and 440 nm, respectively. Its fluorescence is quenched by Cl-, Br-, I-, SCN-, NO 2 - and tetraphenylborate but not by NO 3 - , SO 4 2- , iminodiacetate or malate. These effects are independent of pH. This compound was loaded into tonoplast vesicles from red beet (Beta vulgaris L.) storage roots or from barley (Hordeum vulgare L.) roots by incubation at 37° C and the external probe was then removed by repeated centrifugation of the vesicles in SPQ-free medium. In this way a large proportion of the observed fluorescence signal was from the interior of the vesicles, and its quenching could be used to monitor, quantitatively, and in real time, the intravesicular Cl- concentration. In this paper we describe some of the problems encountered in using this probe to measure Cl- transport in tonoplast vesicles, how these were overcome and some characteristics of Cl- transport at the tonoplast as measured by the probe.Abbreviations and symbols BTP 1,3-bis[tris(hydroxymethyl)-methylamino-propane - DTT dithiothreitol - membrane potential - pH pH gradient - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - SPQ 6-methoxy-1-(3-sulfonatopropyl)quinolinium - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

14.
Summary A systematic study was made of the action of 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid (SITS) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanidep-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS. Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

15.
Summary The vacuolar H+ ATPase is inhibited by N-ethylmaleimide (NEM), a sulfhydryl compound, suggesting the involvement of a sulfhydryl group in this transport process. We have examined the effects of several sulfhydryl-containing compounds on the vacuolar H+ ATPase of rabbit renal cortical endosomes. A number of such compounds were effective inhibitors of endosomal H+ transport at 10–5–10–6 m, including NEM, mersalyl, aldrithiol, 5,5 dithiobis (2-nitrobenzoic acid),p-chloromercuribenzoic acid (PCMB) andp-chloromercuriphenyl sulfonic acid (PCMBS). NEM, mersalyl, aldrithiol and PCMBS had no effect on pH-gradient dissipation, whereas PCMB decreased the pH gradient faster than control. In the absence of ATP, PCMB (10–4 m) stimulated endosomal36Cl uptake, particularly in the presence of an inside-alkaline pH gradient (pHin=7.6/pHout=5.5.). This result was not an effect of PCMB on the Cl-conductive pathway. The less permeable PCMBS did not stimulate36Cl uptake. The effects of PCMB were concentration dependent and were prevented by dithioerithritol,. ATP-dependent36Cl uptake was decreased by addition of PCMB. Finally, PCMB had no effect on45Ca2+ uptake. These results support the presence of two functionally important sulfhydryl groups in this endosomal preparation. One such group is involved with ATP-driven H+ transport and must be located on the cytoplasmic surface of the endosomal membrane. The second sulfhydryl group must reside on the internal surface of the endosomal membrane and relates to a PCMB-activated Cl/OH exchanger that is functional both in the presence and absence of ATP. This endosomal transporter is similar to the PCMB-activated Cl/OH exchanger recently described in rabbit renal brush-border membranes.  相似文献   

16.
A mixed membrane preparation obtained from turtle bladder epithelial cells contains (Na+ + K+)-ATPase, adenylate cyclase and protein kinase, which interact with ouabain, norepinephrine and cyclic AMP, respectively. When such a preparation is obtained from bladders which had been preexposed to serosal fluids containing the tritiated form of 4,4′-diisothiocyano-2,2′-disulfonic stilbene, the subsequently isolated membrane proteins are enriched in tritium as well as in the afore-mentioned enzymes, none of which is inhibited. Freeflow electrophoresis separates the mixed membrane preparation into two distinguishable groups: one, construed as apical membranes, is enriched in norepinephrine-sensitive adenylate cyclase and cyclic AMP-sensitive protein kinase; the other, construed as basal-lateral membranes, is enriched in ouabain-sensitive ATPase and 4,4′-diisothiocyano-2,2′-disulfonic stilbene-binding proteins.The physiological counterparts of these enzymatically defined membrane markers are the mucosal sidedness of the transport effects of norepinephrine and cyclic AMP derivatives and the serosal sidedness of the transport effects of ouabain and disulfonic stilbenes in the intact turtle bladder. The discreteness and ion selectivity of each membrane-bound, transport-related element are discussed in relation to the corresponding characteristics of each transport process in vivo; the possibility of regulation of anion transport by adenylate cyclase-protein kinase system is also discussed.  相似文献   

17.
Summary The changes in the cytoplasmic Cl concentration, [Cl] c , are monitored at the time of withdrawal (starvation) and subsequent replacement of Cl in the outside medium. The measurement technique exploits the involvement of Cl inChara excitation. The transient clamp current due to Cl,I Cl, is separated from other excitation transients through Hodgkin-Huxley (HH) equations, which have been adjusted toChara. TheI Cl amplitude depends on HH parameters, [Cl] c and the maximum membrane conductance to Cl, . The results are discussed in terms of these quantities.I Cl and were found to fall after 6–10 hr of Cl starvation, thus supporting the hypothesis that [Cl c decreases in Cl-free medium. The best HH fit to starved data was obtained with [Cl c =3.5mm. The time-course forI Cl decline is considerably slower than the time-course of the rise of the starvation-stimulated influx. As cells starved for periods longer than 24 hr are re-exposed to Cl, it is revealed that while [Cl] c remains low during long starvation, increases to values greater than those of the normal cells. Such differences among cells starved for various lengths of time have not been detected previously.  相似文献   

18.
Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H+-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that thein situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl concentration and is inhibited by 4,4-diisothiocyano-2,2-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparentK m for Cl of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.  相似文献   

19.
Active Cl- uptake by Chlorella fusca was examined by using 36Cl as a label. Under light/air conditions chloride influx from a 2.4·10-5 M solution was 4.0±0.04 nmol m-2s-1. After 70±10 min a stationary 380±40 fold accumulation was reached. In dark/air and dark/argon influx and accumulation were reduced to 25±6%, respectively, 5±1.5% of the light/air control. Cl- uptake had a broad optimum around pH 7 and showed saturation kinetics with a K M of 1.25·10-5 M and a v max of 7.0 nmol m-2s-1 in light/air. Br- inhibited Cl- uptake strongly, J-, ClO 4 - , SO 4 2- , and NO 3 - had no inhibitory effect. Inhibitor studies with carbonyl cyanide m-chlorophenylhydrazone and N,N-dicyclohexylcarbodiimide resulted in a good correlation between Cl- uptake and ATP level. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea and darkness reduced transport activity without affecting the ATP level.The magnitudes of the pH gradient and the membrane potential across the cell membrane were determined and/or estimated under different conditions. It could be shown that in Chlorella Cl- transport cannot proceed via secondary active H+/Cl- cotransport. In addition, 2H+/Cl- cotransport seems unlikely for energetic reasons. On the basis of the results of this and the following study, a primary active ATP-driven Cl-/OH- exchange pump is proposed.Abbreviations CCCP carbonyl cyanide m-chlorophenylhyd razone - DCCD N,N-dicyclohexylcarbodiimide - DCMU 3-(3.4-dichlorophenyl)-1.1-dimethylurea - DMO 5,5-dimethyloxazolidine-2,4-dione - Hepes N-2-hydroxyethylpiperazine-N ethane-sulfonic acid - POPOP 1.4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2.5-diphenyloxazole To whom correspondence should be addressed  相似文献   

20.
Summary In gills of the shore crab Carcinus maenas an ATPase activity was found which was stimulated by bicarbonate and inhibited by low concentration of oligomycin and thiocyanate. This ATPase was activated by small hydrated alkali cations, i.e., activation was absent in the presence of Li+, small in the presence of Na+, and highest in the presence of K+ (K m=4 mM). Inhibitor studies using ouabain, NEM, and vanadate suggest that this ATPase is different from (Na++K+)-ATPase, the H+-ATPase of organelles, or an E 1 E 2-type ATPase represented by the H+/K+-ATPase in gastric mucosa. Results obtained by differential and density gradient centrifugation indicate that this ATPase is located in crab gill mitochondria, a location ruling out its direct participation in transepithelial ion transport. Since the ATPase lacked specific Cl--activation it is not considered to be a Cl- pump but a mitochondrial F 1 F 0-ATPase. Specific activities of mitochondrial ATPase and (Na++K+)-ATPase were of comparable magnitude. Both ATPases were greatly increased in gills of crabs acclimated to brackish water (salinity 10) compared to crabs maintained in sea water (30). These results imply that low salinity-induced modifications in branchial tissues include mechanisms for active ion uptake as well as the elements for provision of cellular energy.Abbreviations ATPase adenosine triphosphatase - HEPES N-(2-hydroxyethyl)-1-piperazine-N(2-ethanesulfonic acid) - LDH lactate dehydrogenase - NADH reduced nicotinamide adenine dinucleotide - NEM Niethylmaleimide - PEP phosphoenolpyruvate - PK pyruvate kinase - TRIS TRIS (hydroxymethyl)aminomethane - S salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号