首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hen egg white lysozyme was immobilized by carbodiimide method to form amide bonds with a polymer (AS-L) showing reversibly soluble-insoluble characteristics with pH change. The immobilized enzyme (LY-AS) was soluble above pH 6 and precipitate below pH 4.5, offering advantages in that it can carry out hydrolysis of microbial cells in a soluble form yet be recovered after precipitation at low pH. The maximum specific activity of LY-AS was 66% of that of free lysozyme with M. lysodeikticus cells as substrate, which is much higher than the values reported in the literature using water-insoluble materials as carriers. The effects of pH and temperature on the activity of LY-AS were studied and compared with those of free lysozyme. With repeated pH cycles between 6.6 and 4.5, the operation half-life of immobilized enzyme activity was nine cycles. Repeated batch lysis of microbial cells could be carried out with intermittent enzyme precipitation and recovery steps. In such an operation the insoluble residual cells should be recovered together with the immobilized enzyme to minimize enzyme loss arising from adsorption to cells.  相似文献   

2.
Preparation and properties of soluble-insoluble immobilized proteases   总被引:1,自引:0,他引:1  
In order to carry out an effective enzyme reaction, the preparation of soluble-insoluble immobilized enzyme was investigated. Proteases were selected as model enzymes, and their immobilization was carried out by using an enteric coating polymer as a carrier. Among the polymers tested, methacrylic acid-methylacrylate-methylmethacrylate copolymer (MPM-06) gave the most active soluble-insoluble immobilized papain. This immobilized papain showed insoluble from below pH 4.8 and soluble form above pH 5.8; it was also soluble in water-miscible organic solvent. It was reusable and more stable with heat and water-miscible organic solvents than native proteases. Furthermore, various proteases could be immobilized by using MPM-06 with high activity. Chymotrypsin immobilized by this method catalyzed the effective peptide synthesis in a heterogeneous reaction system containing water-miscible organic solvent.  相似文献   

3.
Summary A yeast lytic enzyme was covalently immobilized on an enteric coating polymer, Eudragit S, that is reversibly soluble and insoluble (S-IS) depending on the pH of the reaction medium. The yeast lytic enzyme immobilized on Eudragit S (Y-E) showed a sharp response of solubility to slight changes in pH without decrease in enzymatic activity. The specific activity per amount of enzyme protein of Y-E for dry yeast cells was about two-thirds that of the native enzyme. In both lysis reactions of dry and pressed baker's yeast cells, changing the pH of the reaction medium from 7.0 to 4.8 at an appropriate interval allows the insoluble Y-E and the reaction products (soluble protein for dry yeast cells and invertase and soluble protein for pressed baker's yeast cells) to be repeatedly separated. The reaction method using a reversible S-IS enzyme is a promising procedure for repeated use of the enzyme in a heterogeneous reaction system containing yeast cells as a substrate.  相似文献   

4.
5.
6.
7.
The lysis of Pseudomonas aeruginosa by lysozyme   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

8.
9.
10.
pH-Dependence of the kinetic parameters of Micrococcus lysodeicticus cell lysis under the action of the protein hen egg lysozyme at the pH 6.9-10.0 at 25 and 37 degrees C has been investigated. The pKb effective values for the lysozyme catalytic activity controlling group have been calculated. The DeltaHion value indicates that this group is the carboxyl one though its pK (9.15 at 25 degrees C) is found far for the limit of the carboxyl groups pK values. The cause of this abnormal pK values is supposed to be the strong negative charge of the bacterial cell wall. As a result the enzyme that catalyzes the hydrolysis ofcopolymer N-acetylglucosamine--N-acetylmuramic acid acts in the high acidity microenvironment.  相似文献   

11.
Summary Saccharomyces cerevisiae was immobilised by adsorption to untreated sugar cane bagasse in a packed bed reactor. Complete conversion of glucose to ethanol was obtained at a dilution rate of 0.19 h−1. Continuous ethanol production was maintained for up to 57 days. Reactor productivity increased with increasing packing density of the bagasse. Plugging of void spaces due to cell overgrowth led to channelling of the feed and decreased reactor productivity. Increasing the average column temperature alleviated plugging and restored column performance over a short period; however prolonged exposure to the high temperature resulted in decreased ethanol production rates. Bagasse has advantages as a support material for ethanol production from sugar cane or beet, including negligible cost, ready availability and the capacity to support a high yeast population.  相似文献   

12.
13.
A method developed for the lysis of oral streptococci that employed the action of lysozyme suspended in dilute tris(hydroxymethyl)aminomethane-hydrochloride buffer containing polyethylene glycol has been adapted for use with lactobacilli, actinomycetes, propionibacteria, and pediococci. Most of the cellular deoxyribonucleic acid was liberated from many strains of bacteria usually thought to be lysozyme resistant. The major observations were as follows: (i) supplementation of the growth medium with L-threonine, L-lysine, or both frequently produced cells that were more susceptible to lysis by lysozyme; (ii) glucose-containing media produced cells that were more easily lysed than those from cultures grown on other substrates; (iii) polyethylene glycol not only served as an osmotic stabilizer, it also enhanced the extent of lysis; and (iv) dilute tris(hydroxymethyl)aminomethane buffer was superior to the buffer systems most commonly employed in published muramidase-based lysis techniques. Stationary-phase cells of Lactobacillus casei and Streptococcus mutans were more easily lysed than those isolated from log-phase cultures. The method as detailed in this report should be generally applicable for the lysis of gram-positive, asporogenous bacteria.  相似文献   

14.
We here demonstrate that NK cell activity by human peripheral blood mononuclear cells (PBMC) against K562 or MOLT-4 target cells is rapidly and reversibly inhibited by two agents that inhibit the lipoxygenation of fatty acids, BW755C and nordihydroguaiaretic acid (NDGA). Natural killing by nonadherent PBMC was similarly inhibited by both agents, indicating that monocytes were not required for the effect. The inhibition of natural killing was not seen with indomethacin at concentrations that inhibit prostaglandin synthesis but not the lipoxygenation of arachidonic acid. Moreover, indomethacin did not alter inhibition by either BW755C or NDGA. Thus, suppression of natural killing by these agents was not mediated by the effects on prostaglandin synthesis; neither agent inhibited target cell binding. These results suggest that products of lipoxygenation are required for target cell lysis by human NK cells.  相似文献   

15.
The lysis of micro-organisms by lysozyme and related enzymes   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Fibrous poly(styrene-b-glycidylmethacrylate) brushes were grafted on poly(styrene–divinylbenzene) (P(S–DVB)) beads using surface-initiated atom transfer radical polymerization. Tetraethyldiethylenetriamine (TEDETA) ligand was incorporated on P(GMA) block. The ligand attached beads were used for reversible immobilization of lipase. The influences of pH, ionic strength, and initial lipase concentration on the immobilization capacities of the beads have been investigated. Lipase adsorption capacity of the beads was about 78.1 mg/g beads at pH 6.0. The K m value for immobilized lipase was about 2.1-fold higher than that of free enzyme. The thermal, and storage stability of the immobilized lipase also was increased compared to the native lipase. It was observed that the same support enzyme could be repeatedly used for immobilization of lipase after regeneration without significant loss in adsorption capacity or enzyme activity. A lipase from Mucor miehei immobilized on styrene–divinylbenzene copolymer was used to catalyze the direct esterification of butyl alcohol and butyric acid.  相似文献   

18.
The immobilization of Pseudomonas delafieldii R-8 in calcium alginate beads has been studied in order to improve biodesulfurization activity in oil/water (O/W) biphasic systems. A gas jet extrusion technique was performed to produce immobilized beads. The specific desulfurization rate of 1.5 mm diameter beads was 1.4-fold higher than that of 4.0 mm. Some nonionic surfactants can significantly increase the activity of immobilized cells. The desulfurization rate with the addition of 0.5% Span 80 increased 1.8-fold compared with that of the untreated beads. The rate of biodesulfurization was markedly enhanced by decreasing the size of alginate beads and adding the surfactant Span 80, most likely resulting from the increasing mass transfer of substrate to gel matrix.  相似文献   

19.
Metabolic activity of yeast immobilized as supported monolayer   总被引:2,自引:0,他引:2  
Summary Immobilization of Saccharomyces cerevisiae as a monocellular layer adhering to a glass support has been achieved by adsorbing Al or Fe(III) ions on the cells or by coating the support with Al(OH)3 or Fe2O3 particles. The initial rate of glucose to ethanol conversion was measured in pure glucose solutions for free cells in suspension, either untreated or submitted to the chemical treatments used for immobilization, and for immobilized cells, using a small reactor (50–70 ml) in closed circuit. The conversion rate of immobilized cells is in the range of 3.5 to 5×10-14 mol/cell·h while that of untreated suspended cells is in the range of 5 to 7×10-14 mol/cell·h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号