共查询到20条相似文献,搜索用时 0 毫秒
1.
In situ intercellular strains in the outer annulus fibrosus of bovine caudal discs were determined under two states of biaxial strain. Confocal microscopy was used to track and capture images of fluorescently labelled nuclei at applied Lagrangian strains in the axial direction (E(A)(S)) of 0%, 7.5% and 15% while the circumferential direction (E(C)(S)) was constrained to either 0% or -2.5%. The position of the nuclear centroids were calculated in each image and used to investigate the in situ intercellular mechanics of both lamellar and interlamellar cells. The intercellular Lagrangian strains measured in situ were non-uniform and did not correspond with the biaxial Lagrangian strains applied to the tissue. A row-oriented analysis of intercellular unit displacements within the lamellar layers found that the magnitudes of unit displacements between cells along a row (delta;(II)) were small (|delta;(IIavg)|=1.6% at E(C)(S)=0%, E(A)(S)=15%; |delta;(IIavg)|=3.0% at E(C)(S)=-2.5%, E(A)(S)=15%) with negative unit displacements occurring greater than one-third of the time. Evidence of interlamellar shear and increased intercellular Lagrangian strains among the cells within the interlamellar septa suggested that their in situ mechanical environment may be more complex. The in situ intercellular strains of annular cells were strongly dependent upon the local structure and behaviour of the extracellular matrix and did not correspond with applied tissue strains. This knowledge has immediate relevance for in vitro investigations of disc mechanobiology, and will also provide a base to investigate the mechanical implications of disc degeneration at the cellular level. 相似文献
2.
A. Baldit D. Ambard F. Cherblanc P. Royer 《Biomechanics and modeling in mechanobiology》2014,13(3):643-652
Uniaxial tensile and relaxation tests were carried out on annulus fibrosus samples carved out in the circumferential direction. Images were shot perpendicularly to the loading direction. Digital image correlation techniques accurately measured the evolution of full displacement fields in both transverse directions: plane of fibres and plane of lamellae. In the fibre plane, strains were governed by the reorientation of fibres along the loading direction. This implies strong transverse shrinkage with quasi-linear behaviour. Conversely, a wide range of behaviour was observed in the lamella plane: from shrinkage to swelling. Strong nonlinear evolutions were generally obtained. The strain field in the lamella plane generally presented a central strip section with more pronounced swelling. Our physical interpretation relies on the porous nature of annulus tissue and its anisotropic stiffness. Indeed, the liquid over-pressure generated inside the sample by the strong shrinkage in the fibre plane discharges in the perpendicular direction since rigidity is lower in the lamella plane. Regarding the strain field measured in the lamella plane, this interpretation agrees with (a) symmetric strain distribution with respect to the longitudinal axis of samples, (b) the reversal in behaviour from shrinkage to swelling and (c) the decrease in strain during relaxation tests associated with outward flows. The variety of transverse behaviours observed experimentally could result from uncertainties regarding the initial reference state of tissue samples. Since the mechanical behaviour is highly nonlinear, experimental results underline that a slight uncertainty concerning the pre-stress applied to samples can lead to wide variability in the mechanical properties identified. 相似文献
3.
Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of
its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded
nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an
important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation
through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work,
a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile
response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded
nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress–strain data for bilayers with three different
fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers,
and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50%
of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured
changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture
duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure–function
relations in native tissues and as a test-bed for the development of constitutive models to describe them. 相似文献
4.
Bass EC Wistrom EV Diederich CJ Nau WH Pellegrino R Ruberti J Lotz JC 《Journal of biomechanics》2004,37(2):233-240
The intervertebral disc is implicated as the source of low-back pain in a substantial number of patients. Because thermal therapy has been thought to have a therapeutic effect on collagenous tissues, this technique has recently been incorporated into several minimally invasive back pain treatments. However, patient selection criteria and precise definition of optimum dose are hindered by uncertainty of treatment mechanisms. The purpose of this study was to quantify acute changes in annulus fibrosus biomechanics after a range of thermal exposures, and to correlate these results with tissue denaturation. Intact annulus fibrosus (attached to adjacent vertebrae) from porcine lumbar spines was tested ex vivo. Biomechanical behavior, microstructure, peak of denaturation endotherm, and enthalpy of denaturation (mDSC) were determined before and after hydrothermal heat treatment at 37 degrees C, 50 degrees C, 60 degrees C, 65 degrees C, 70 degrees C, 75 degrees C, 80 degrees C, and 85 degrees C. Shrinkage of excised annular tissue (removed from adjacent vertebrae) was also measured after treatment at 85 degrees C. Significant differences in intact annulus biomechanics were observed after treatment, but the effects were much smaller in magnitude than those observed in excised annulus and those reported previously for other tissues. Consistent with this, intact tissue was only minimally denatured by treatment at 85 degrees C for 15 min, whereas excised tissue was completely denatured by this protocol. Our data suggest that in situ constraint imposed by the joint structure significantly retards annular thermal denaturation. These findings should aid the interpretation of clinical outcomes and provide a basis for the future design of optimum dosing regimens. 相似文献
5.
Recent modelling efforts in the field of mechanics of the intervertebral disc, demonstrate that the deformation properties of intervertebral disc tissue are intimately linked to compositional changes. This paper presents uniaxial tensile relaxation experiments of canine annulus fibrosus tissue under stepwise changes of external salt concentration. 相似文献
6.
7.
Jeremy A. Klein 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,719(1):98-101
X-ray diffraction has been used to measure the orientation of the collagen fibres in the ventral annulus fibrosus of intact L1/2 rabbit intervertebral disc during in vitro bending and torsion. Fibres are tilted with respect to the axis of the spine. As predicted by theory, fibre tilt decreases in those regions of the annulus which are stretched by bending but increases in the slackened regions. Good agreement with the quantitative predictions of bending theory was obtained in three of the six series of experiments, the predicted trend being found in all six. Tilt direction alternates in successive lamellae of the annulus. When discs were subjected to both clockwise and anticlockwise torsion of 5°, the two families of titled fibres reoriented in the expected directions. 相似文献
8.
A detailed understanding of the anatomical and mechanical environment in the intervertebral disc at the scale of the cell is necessary for the design of tissue engineering repair strategies and to elucidate the role of mechanical factors in pathology. The objective of this study was to measure and compare the macroscale to microscale strains in the outer annulus fibrosus in various cellular regions of intact discs over a range of applied flexion. Macroscale strains were measured on the annulus fibrosus surface, and contrasted to in situ microscale strains using novel confocal microscopy techniques for dual labeling of the cell and the extracellular matrix. Fiber oriented surface strains were significantly higher than in situ fiber strains, which implies a mechanism of load redistribution that minimizes strain along the fibers. Non-uniformity of the strains and matrix distortion occurred immediately and most interestingly varied little with increase in flexion (3–16°), suggesting that inter-fiber shear is important in the initial stages of strain redistribution. Fiber oriented intercellular strains were significantly larger and compressive compared to in situ strains in other regions of the extracellular matrix indicating that the mechanical environment in this region may be unique. Further examination of the structural morphology in this pericellular region is needed to fully understand the pathway of strain transfer from the tissue to the cell. This study provides new knowledge on the complex in situ micro-mechanical environment of the annulus fibrosus that is essential to understanding the mechanobiological behavior of this tissue. 相似文献
9.
The annulus fibrosus (AF) of the disk is a highly nonlinear and anisotropic material that undergoes a complex combination of loads in multiple orientations. The tensile mechanical behavior of AF in the lamellar plane is dominated by collagen fibers and has been accurately modeled using exponential functions. On the other hand, AF mechanics perpendicular to the lamella, in the radial direction, depend on the properties of the ground matrix with little to no fiber contribution. The ground matrix is mainly composed of proteoglycans (PG), which are negatively charged macromolecules that maintain the tissue hydration via osmotic pressure. The mechanical response of the ground matrix can be divided in the contribution of osmotic pressure and an elastic solid part known as extra-fibrillar matrix (EFM). Mechanical properties of the ground matrix have been measured using tensile and confined compression tests. However, EFM mechanics have not been measured directly. The objective of this study was to measure AF nonlinear mechanics of the EFM in tension and compression. To accomplish this, a combination of osmotic swelling and confined compression in disk radial direction, perpendicular to the lamella, was used. For this type of analysis, it was necessary to define a stress-free reference configuration. Thus, a brief analysis on residual stress in the disk and a procedure to estimate the reference configuration are presented. The proposed method was able to predict similar swelling deformations when using different loading protocols and models for the EFM, demonstrating its robustness. The stress-stretch curve of the EFM was linear in the range 0.9 < λ? < 1.3 with an aggregate modulus of 10.18±3.32 kPa; however, a significant nonlinearity was observed for compression below 0.8. The contribution of the EFM to the total aggregate modulus of the AF decreased from 70 to 30% for an applied compression of 50% of the initial thickness. The properties obtained in this study are essential for constitutive and finite element models of the AF and disk and can be applied to differentiate between functional degeneration effects such as PG loss and stiffening due to cross-linking. 相似文献
10.
Intervertebral disc degeneration results in disorganization of the laminate structure of the annulus that may arise from mechanical microfailure. Failure mechanisms in the annulus were investigated using composite lamination theory and other analyses to calculate stresses in annulus layers, interlaminar shear stress, and the region of stress concentration around a fiber break. Scanning electron microscopy (SEM) was used to evaluate failure patterns in the annulus and evaluate novel structural features of the disc tissue. Stress concentrations in the annulus due to an isolated fiber break were localized to approximately 5 microm away from the break, and only considered a likely cause of annulus fibrosus failure (i.e., radial tears in the annulus) under extreme loading conditions or when collagen damage occurs over a relatively large region. Interlaminar shear stresses were calculated to be relatively large, to increase with layer thickness (as reported with degeneration), and were considered to be associated with propagation of circumferential tears in the annulus. SEM analysis of intervertebral disc annulus fibrosus tissue demonstrated a clear laminate structure, delamination, matrix cracking, and fiber failure. Novel structural features noted with SEM also included the presence of small tubules that appear to run along the length of collagen fibers in the annulus and a distinct collagenous structure representative of a pericellular matrix in the nucleus region. 相似文献
11.
Colombini A Lanteri P Lombardi G Grasso D Recordati C Lovi A Banfi G Bassani R Brayda-Bruno M 《The international journal of biochemistry & cell biology》2012,44(6):1019-1030
Intragenic polymorphisms in the vitamin D receptor gene are linked to disc degeneration features, suggesting that alterations in the vitamer-mediated signalling could be involved in the pathophysiology of the disc and that interaction of disc cells with vitamin D metabolites may be critical for disc health. The vitamer-mediated modulation of disc cells proliferation, metabolic activity, extracellular matrix (ECM) genes expression and proteins production was investigated. It was stated that disc cells express vitamin D receptor and are very sensitive to metabolic stimuli. In monolayer cultures, 1,25(OH)(2)D(3), but not 24,25(OH)(2)D(3), determined an inhibition of the proliferation and regulated also the ECM genes expression in nucleus pulposus and annulus fibrosus cells. Micromass cultures induced a more physiologic expression pattern of extracellular matrix genes. Cells Treatment with vitamin D metabolites did not result in relevant modifications of glycosaminoglycans production, except for annulus cells, whose production was reduced after 1,25(OH)(2)D(3) treatment. Moreover, a reduced glycosaminoglycans staining in both cell types and a significant reduced aggrecan gene expression in annulus cells treated with 1,25(OH)(2)D(3) were observed. A reduction of collagen I and II staining in annulus cells 1,25(OH)(2)D(3) treated, in accordance with a downregulation of collagen genes expression, was also registered. Finally, the vitamin D receptor gene expression did not show significant metabolite-mediated modification in monolayer or micromass cultures. These findings could enhance new insights on the biochemical mechanisms regulated by vitamin D in disc cartilage and possibly involved in the development of physiological/pathological modifications of the disc. 相似文献
12.
Introduction
Programmed cell death of intervertebral disc (IVD) cells plays an important role in IVD degeneration, but the role of autophagy, a closely related cell death event, in IVD cells has not been documented. The current study was designed to investigate the effect of interleukin (IL)-1β on the occurrence of autophagy of rat annulus fibrosus (AF) cells and the interrelationship between autophagy and apoptosis. 相似文献13.
Annulus fibrosus of intervertebral discs from diabetic and non-diabetic sand rats were examined by microspectrophotometry for fibronectin content. This was higher in the diabetic animals both in the dorsal and ventral parts and in the outer and inner lamellae of the annulus. It is suggested that diabetes-related changes in fibronectin are similar to changes in annular collagen observed in species other than sand rats. 相似文献
14.
Crosslinking soft tissue has become more common in tissue engineering applications, and recent studies have demonstrated that soft tissue mechanical behavior can be directly altered through crosslinking. Using a recently reported test method that shears adjacent disc lamella, the effect of genipin crosslinking on interlamellar shear resistance was studied using in vitro bovine disc annulus. 相似文献
15.
Replicas of freeze-fractured collagen fibrils of peripheral and central parts of the annulus fibrosus of bovine intervertebral discs show microfibrils which run either arranged in parallel or in a helix with an inclination-angle ranging from 4 degrees to 8 degrees. According to results of freeze-fracutred tissues, thin sections of specimens treated with 4M guanidinium chloride show collagen fibrils with a parallel or a slightly wavy microfibrillar packing. Thin sections of specimens treated with alcian blue diluted in MgCl2 critical electrolyte solutions reveal interfibrillar proteoglycan particles with a filamentous shape in the peripheral zones of the annulus fibrosus and a predominant leaf-like appearance in the inner ones. These observations are discussed with reference to previous data concerning the variation in composition from the peripheral to the inner parts of the annulus fibrosus. 相似文献
16.
Kochman M Lawrynowicz-Paciorek M Piekarska K Magdziak A Kałuzewski S 《Medycyna do?wiadczalna i mikrobiologia》2005,57(3):241-246
The study was carried out of 22 isolates of S. aureus isolated from 7 different incriminated food's samples from foodborne-disease outbreaks. The possibility of these isolates to producing of enterotoxins by commercial test SET-RPLA (Oxoid) was tested. The genotyping of these isolates was done by pulse-filed gel electrophoresis, acc. to Pfaller in own modification. On the basis of the DNA restriction patterns of the 22 isolates--5 strains were singled out, one of these strains--strain V (isolat nr 7) was not relationship to others. It was found that this strain V was one enterotoxin produced. Additionaly, all tested strains, in spite of the strain nr V, were isolated from the 2 or 3 samples of different kinds of foods. In the present study it has been shown too, that several similar colonies should be isolated for farther studies to assess microbiological contamination of the food products properly. 相似文献
17.
Fibronectin stains were carried out and evaluated by microspectrophotometric techniques in annuli fibrosi of vertebral discs of sand rats (Psammomys obesus) of both sexes and two age groups, 13-18 months and over 2 years of age. The distribution of fibronectin in the annulus shows a centripetal gradient from the outer to the inner laminae. Fibronectin was significantly more abundant in the annuli of old than of young animals of corresponding sex. Sex differences were not significant. The dorsal segment contained more fibronectin than the ventral, but the difference was statistically significant only in the aged females. The outer laminae of the annuli appeared consistently higher in fibronectin content than the inner laminae. 相似文献
18.
19.
Kerry Varettas 《Cell and tissue banking》2013,14(4):621-625
Allograft musculoskeletal tissue is commonly used in orthopaedic surgical procedures. Cadaveric donors of musculoskeletal tissue supply multiple allografts such as tendons, ligaments and bone. The microbiology laboratory of the South Eastern Area Laboratory Services (SEALS, Australia) has cultured cadaveric allograft musculoskeletal tissue samples for bacterial and fungal isolates since 2006. This study will retrospectively review the micro-organisms isolated over a 6-year period, 2006–2011. Swab and tissue samples were received for bioburden testing and were inoculated onto agar and/or broth culture media. Growth was obtained from 25.1 % of cadaveric allograft musculoskeletal tissue samples received. The predominant organisms isolated were coagulase-negative staphylococci and coliforms, with the heaviest bioburden recovered from the hemipelvis. The rate of bacterial and fungal isolates from cadaveric allograft musculoskeletal tissue samples is higher than that from living donors. The type of organism isolated may influence the suitability of the allograft for transplant. 相似文献