首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attachment of B. microplus larvae was examined using slices (0.5 mm) of bovine skin stretched over a suitable medium. Optimal temperature for attachment lay between 31 and 38°C. At 38°C, 70 to 80% had attached by 4 h but this was followed 6–7 h after the release of the larvae by a significant decrease in the percentage attached. By 8 h, the percentage attached had risen again and remained at 70–80% for the subsequent 16 h. Attachment was not influenced by ambient relative humidity within the range 20–75 % on the time scale studied (16 h). Most larvae denied access to the skin surface at 20 or 45 % R.H. (38°C) died within 24 h. Those allowed to feed survived at 45% but most died at 20% R.H. There was no difference in attachment when bovine or rabbit serum or phosphate buffered saline was used, nor when skin was taken from Zebu × European cattle or Herefords. Attachment was no different when skin was taken from neck, rib or rump, or from cattle with different levels of resistance to B. microplus but there was reduced attachment with mouse skin. Attachment was reduced on skin which had been stored at ? 15°C for 1 day but storage at 10°C for 16 h had no effect. These results are related to problems of tick water balance, host specificity and stimuli for tick attachment.  相似文献   

2.
Bioassays were carried out to examine the influence of temperature and duration of leaf wetness on the infectivity of an isolate of Erynia neoaphidis for its aphid host Acyrthosiphon kondoi. Preliminary experiments demonstrated that primary spores produced in vitro were as infectious as those formed in vivo. No consistent effect of temperature on infectivity of primary spores could be detected. The time taken to kill an aphid increased as temperature decreased, from 3–5 days at 20 °C to 12–15 days at 8 °C, suggesting a threshold for disease development of 4 °C. Increasing duration of the period of leaf wetness up to 24 h after inoculation increased the final level of infection. At 20 °C, a minimum moisture period of 3 h was required for infection with maximum infection occurring after about 7 h. These times increased slightly at 15 °C but extending to 7 and 16 h respectively at 10 °C. The epizootiological implications of these results are discussed with reference to previously published data on in vivo production of primary spores of E. neoaphidis.  相似文献   

3.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

4.
Germination of Peronospora viciae sporangia washed off infected leaves varied from 20% to 60%. Sporangia shaken off in the dry state gave 11–19% germination. Most sporangia lost viability within 3 days after being shed, though a few survived at least 5 days. Infected leaves could produce sporangia up to 6 weeks after infection, and sporulating lesions carried viable sporangia for 3 weeks. Sporangia germinated over the range 1–24 °C, with an optimum between 4 and 8 °C. Light and no effct. The temperature limits for infection were the same as for germination, but with an optimum between 12 and 20 °C. A minimum leaf-wetness period of 4h was required, and was independent of temperature over the range 4–24 °C. Maximum infectivity occurred after 6h leaf wetness at temperatures between 8 and 20 °C. Infection occurred equally in continuous light or in darkness. After an incubation period of 6–10 days sporangia were produced on infected leaves at temperatures between 4 and 24 °C, with an optimum of 12–20 °C. Exposure to temperatures of 20–24 °C for 10 days reduced subsequent sporulation. Sporangia produced at suboptimal temperatures were larger, and at 20 °C. smaller, than those produce at 12–16 °C. Viability was also reduced. No sporangia were produced in continuous light, or at relative humidities below 91%. For maximum sporulaiton an r.h. of 100% was required, following a lower r.h. during incubation. Oospores wre commonly formed in sporulating lesions, and also where conditons limited or prevented sporulation. The results are discussed briefly in relaiton to disease development under field conditions.  相似文献   

5.
The development of Puccinia hordei on barley cv. Zephyr   总被引:2,自引:0,他引:2  
Germination of uredospores of Puccinia hordei was similar on cover-slips and on the first leaves of barley seedlings (cv. Zephyr) at 100 % r.h. over the range 5–25 °C, being greatest at 20 °C. At 15, 20 and 25 °C maximum germination was attained in 6 h. No uredospores germinated on coverslips in humidities below saturation. The numbers of pustules which subsequently developed on plants incubated at 5, 10, 15 or 18 °C and 100 % r.h. for varying periods up to 24 h, were directly related to rise in temperature and length of incubation. The time from inoculation to eruption of pustules (generation time) was 6 days at 25 °C, 8 days at 20 °C, 10 days at 15 °C, 15 days at 10 °C and 60 days at 5 °C. Pustule production on inoculated plants which had been kept at 5 °C was rapidly accelerated when they were transferred to 20 °C. Data obtained at constant temperatures were used to predict generation times of the fungus in the field. The productivity of pustules, determined as weight of uredospores, was examined at 10, 15 and 20 °C. Significantly more spores were produced at 15 than at 10 °C and most were produced at 20 °C. The results are discussed in relation to those obtained by other workers and to the development of brown rust in the field.  相似文献   

6.
A technique for simultaneous inoculation of cucumber cotyledons with Colletotrichum orbiculare race 1 and Cladosporium cucumerinum has been developed. The procedure permitted both resistant and susceptible plants to be recovered. Seedlings were grown at 20°C and inoculated 24 h after emergence with Colletotrichum orbiculare (200 spores in 2 μ1 of water) and Cladosporium cucumerinum (1000 spores in 5 μ1 of water) followed by 48 h of incubation in the dark at 20°C and 100% r.h., and 48 h in a 20°C lighted growth chamber. Seedlings were then moved to a growth chamber at 21°C at night and at 26°C during the day for 4 days and plants were rated as resistant or susceptible 8 days after inoculation. No interference in the expression of resistance or susceptibility of cultivars to either pathogen was detected in simultaneous inoculations.  相似文献   

7.
Sporulation in A. brassicae and A. brassicicola on naturally-infected leaf discs of oilseed rape and cabbage required humidities equal to or higher than 91.5% and 87% r.h. respectively. The optimum temperatures for sporulation were 18–24°C for A. brassicae and 20–30°C for A. brassicicola at which temperatures both fungi produced spores in 12–14 h. Above 24°C sporulation in A. brassicae was inhibited. At sub-optimal temperatures sporulation times for A. brassicicola were significantly longer than for A. brassicae with the differences increasing with decrease in temperature. Interrupting a 16-h wet period at 20°C with a period of 2 h at 70% or 80% r.h. did not affect sporulation in either fungus but a dry interruption of 3–4 h inhibited sporulation in both. Exposure of both fungi to alternating wet (18 h at 100% r.h., 20°C) and dry periods (6 or 30 h at 5565% r.h., 20°C) did not affect the concentration of spores produced in each wet period. Sporulation times were not affected by either the host type of the age of the host tissue. White light (136 W/m2) inhibited sporulation in A. brassicae with the degree of inhibition increasing with increasing light intensity. The effect of light on sporulation in A. brassicicola was not tested.  相似文献   

8.
Ascospores of both A‐group and B‐group Leptosphaeria maculans germinated at temperatures from 5–20°C on distilled water agar or detached oilseed rape leaves. After 2 h of incubation on water agar, some A‐group ascospores had germinated at 10–20°C and some B‐group ascospores had germinated at 5–20°C. The percentages of both A‐group and B‐group ascospores that had germinated after 24 h of incubation increased with increasing temperature from 5–20°C. The observed time (Vo50) which elapsed from inoculation until 50% of the spores had germinated was shorter for B‐group than for A‐group ascospores. Germ tube length increased with increasing temperature from 5–20°C for both ascospore groups. Germ tubes from B‐group ascospores were longer than germ tubes from A‐group ascospores at all temperatures tested, but the mean diameter of germ tubes from A‐group ascospores (1.8 μm) was greater than that of those from B‐group ascospores (1.2μm) at 15°C and 20°C. The average number of germ tubes produced from A‐group ascospores (3.8) was greater than that from B‐group ascospores (3.1) after 24 h of incubation at 20°C, on both water agar and leaf surfaces. Germ tubes originated predominantly from interstitial cells or terminal cells of A‐group or B‐group ascospores, respectively, on both water agar and leaf surfaces. Hyphae from A‐group ascospores grew tortuously with extensive branching, whilst those from B‐group ascospores were predominantly long and straight with little branching, whether the ascospores were produced from oilseed rape debris or from crosses between single ascospore isolates, and whether ascospores were germinating on water agar or leaf surfaces.  相似文献   

9.
The developmental rates of various life stages ofRhagoletis completa Cresson (Diptera: Tephritidae) were determined in the laboratory at seven different constant temperatures: 8, 12, 16, 20, 24, 28, and 32±1°C, RH 80±10%, photoperiod L 16∶D8. Preoviposition developmental rate was fastest at 28°C (10±1 days, mean±SD) and slowest at 12°C (26±1 days). About 83% of the females deposited eggs at 20 and 24°C and only 25% oviposited at 32°C. Females laid the highest number of eggs at 24°C and the lowest at 8°C. Egg development increased with increasing temperatures up to 28°C, then declined. The fastest egg development was noticed at 28°C (55±1 h) and slowest at 8°C (389±2 h). Over 90% egg hatch was observed at temperatures between 12 and 32°C, but decreased to 73% at 8°C. Larval development was fastest also at 28°C (20±0.2 days). Over 65% pupation was recorded at 20 and 24°C, but decreased to 15% at 32°C and 12% at 8°C. Pupal development was most rapid at 24°C (53±1 days) and slowest at 8°C (162±2 days). More than 70% of adult emergence was noticed in treatments between 16 and 24°C but decreased to 20% at 8°C. Based on a linear regression model of temperature-development rate relationship, the lower developmental thresholds were determined to be 6.6, 5.3, 2.9, and 5°C for preoviposition, egg, larval, and pupal stages, respectively. Based on a non-linear developmental rate model, the upper developmental thresholds were 34°C for preoviposition, egg, and larval stages and 30°C for pupal stage.  相似文献   

10.
Temperature and daylength responses were determined in culture for isolates of the red alga Cystoclonium purpureum (Hudson) Batters from Nova Scotia (NS, Canada), Helgoland (HE, Germany), and Roscoff (RO, France). Most isolates survived temperatures of –1.5°/–2° to 23°C, whereas 25°C was lethal. Only the RO-gametophytes died at 23°C. Optimal growth conditions were 10°–20°C in both long and short days for the NS isolates and 8°–15°C and 8°–18°C at daylengths of >12 h for the RO and HE isolates, respectively. Tetrasporophytes and gametophytes of the NS isolate reproduced at 10°–20°C in long and short days within 5 months. At lower temperatures reproduction was limited or slow. The European isolates formed tetrasporangia at 10°–20°C (HE) or 5°–l8°C(RO), spermatangia at 5°–15°C (HE) or 5°–20°C (RO), and carpospores at 5°–15°C(HE) or 10°–15°C (RO). Short days either blocked or delayed reproduction of the European isolates. The phenology of C. purpureum was studied at Helgoland and Roscoff, where similar seasonal patterns were observed. In early spring, growth was rapid and plants started to form reproductive structures. In summer, tetra-and carpospores were shed followed by degeneration of the upright axes while branched holdfasts persisted. New upright axes and juvenile plants were formed in autumn, but these remained small during the winter months. Published data indicate that the seasonal pattern at Nova Scotia is similar, although the onset of growth and reproduction is delayed until the end of spring. These observations correspond well with the results of the experiments. The life history of C. purpureum is regulated by temperature and daylength. In the eastern Atlantic, the limiting effect of short days confines growth and reproduction to spring and summer. In the western Atlantic, low winter temperatures alone bring about the same seasonal pattern. After plants have reproduced, uprights degenerate in spite of continuing favorable conditions.  相似文献   

11.
The optimum temperature for sporulation of a strain of Bacillus cereus was estimated at 30°–35°C, where the maximum yield of spores was obtained between 18 and 24 hours’ incubation. Sporulation was more rapid, but less extensive at 40°C and did not occur at all at 45°C. The heat resistance of the spores increased with the sporulation temperature from 20° to 40°C. The spores appear to be more susceptible to heat destruction in the early stage of spore production than after further incubation.  相似文献   

12.
Production of Conidia by Botrytis fabae grown in vitro   总被引:1,自引:0,他引:1  
Conidiation in Botrytis fabae was stimulated by irradiating 1 to 3 day old, but not 4 to 5 day old mycelium. Three cycles of 12 h irradiation + 12 h darkness stimulated the production of about twice as many spores compared with only 12 h irradiation. At 18°C all the spores had been produced within 3 days but not within 2 days from the start of irradiation. Near-u.v. irradiation at wavelengths of 375–400 nm induced most sporulation. Red light at 600–650 nm also stimulated conidiation but irradiation at other wavelengths from 300 to 700 nm was ineffective. Fewer conidia were produced when the fungus was kept in darkness at 4°C between periods of irradiaton at 18°C compared with continuous 18°C. The optimum osmotic potential of the culture, medium for conidiation was about-27 bar although more mycelium grew at even lower osmotic potentials. Abundant spore production occurred when the fungus was grown in media with a wide range of pH values.  相似文献   

13.
C. Stenseth 《BioControl》1979,24(3):311-317
The development ofPhytoseiulus persimilis Athias-Henriot and the effectiveness of it as a predator ofTetranychus urticae (Koch) were studied at constant temperatures of 15°, 18°, 21°, 24° and 27°C (humidity fluctuations from 60% to 90% R.H.) and at constant humidities of 40% and 80% R.H. at the temperatures 21° and 27°. Optimal temperature for time of development was 27° (at 60%–85% R.H.). A high reduction in egg vitality was recorded at 40% R. H. and 27% At 21° the egg vitality was only slightly lower at 40% R.H. than at 80% R.H. The predator gave control ofT. urticae at temperatures from 15° to 27° (humidity fluctuation from 60%–90% R.H.), and the most rapid and efficient control was obtained at 27° (60%–85% R.H.). The predator did not give sufficient control ofT. urticae at 27° and 40% R.H. At 21° control ofT. urticae was obtained at both 40% and 80% R.H., but the prey population was reduced faster at 80% R.H. than at 40% R.H.  相似文献   

14.

Aims

To develop test methods and evaluate the survival of Bacillus anthracis ?Sterne and Bacillus thuringiensis Al Hakam spores after exposure to hot, humid air.

Methods and Results

Spores (>7 logs) of both strains were dried on six different test materials. Response surface methodology was employed to identify the limits of spore survival at optimal test combinations of temperature (60, 68, 77°C), relative humidity (60, 75, 90%) and time (1, 4, 7 days). No spores survived the harshest test run (77°C, 90% r.h., 7 days), while > 6·5 logs of spores survived the mildest test run (60°C, 60% r.h., 1 day). Spores of both strains inoculated on nylon webbing and polypropylene had greater survival rates at 68°C, 75% r.h., 4 days than spores on other materials. Electron microscopy showed no obvious physical damage to spores using hot, humid air, which contrasted with pH‐adjusted bleach decontamination.

Conclusions

Test methods were developed to show that hot, humid air effectively inactivates B. anthracis ?Sterne and B. thuringiensis Al Hakam spores with similar kinetics.

Significance and Impact of the Study

Hot, humid air is a potential alternative to conventional chemical decontamination.  相似文献   

15.
Control of Postharvest Diseases of Sweet Cherry with Ethanol and Hot Water   总被引:2,自引:0,他引:2  
Complete inhibition of the germination of spores of Penicillium expansum occurred after 10 s exposure to 40% ethanol or more at ambient temperature, while spores of Botrytis cinerea were completely inhibited by 30% ethanol or more. Mortality of the spores of P. expansum and B. cinerea in heated 10% ethanol was higher than in water at the same temperatures. Immersion of naturally inoculated fruit in 20, 30, 40, or 50% ethanol reduced the decay present after storage for 10 days at 20°C similarly and by approximately 60–85%. Immersion of fruit that had been inoculated with the spores of P. expansum and B. cinerea reduced decay by both pathogens after storage for 30 days at 0°C and 5 days at 20°C when 30% or higher concentrations of ethanol were used. The incidence of decay after immersion in water alone for 30 s at 24, 50, 55, or 60°C was 57.7, 44.7, 46.2, and 35.7%, respectively, while 10% ethanol at these temperatures the decay incidence to 52.2, 33.9, 32.8, or 14.7%, respectively. Water treatments at 50, 55, or 60°C alone were not effective against P. expansum, while their efficacies were significantly increased by the addition of 10% ethanol. The most effective treatment was immersion in 10% ethanol at 60°C. Ethanol treatments at 20, 30, 40, or 50% and water treatments at 55 or 60°C significantly reduced natural fungal populations on the surfaces of fruit in all of the experiments. Addition of 10% ethanol to water significantly increased the efficacy of water in reducing the fungal populations at elevated temperatures. None of these treatments caused surface injuries to the fruit or adversely affected stem colour.  相似文献   

16.
Decreasing periods of atmospheric humidity in excess of 90 and 75 % r.h. by automatic control decreased the incidence of C. fulvum and B. cinerea and sometimes increased tomato yields. The desired value of humidity was not always achieved but nevertheless environments which were both physically and biologically different were obtained with humidistats set at 90 and 75 % r.h. in glasshouses maintaining two temperature régimes–20 °C day and night, or 20 °C by day and 13 °C at night. Less B. cinerea and C. fulvum occurred on tomatoes grown constantly at 20 °C than on those grown in conditions with lower night temperatures. In the latter regime the end-of-season incidence of C.fulvumvas decreased from 25.0% where humidity was not controlled to 2.8% and 0.0% where humidistats were set at 90 and 75 % r.h. In the same conditions the proportion of blemished fruit damaged by B. cinerea decreased from 2.6% to 1.6% and 0.2%.  相似文献   

17.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. The larvae live throughout winter in leaf petioles and stems. Winter temperatures might play an important role in survival during winter and hence population dynamics, yet to what degree is unknown. This study investigates the effect of exposure time, cold acclimation, and larval stage on survival at ?5 and ?10 °C. Exposure time at ?5 °C was 1, 2, 4, 8, 12, 16, and 20 days and 6, 12, 24, 36, 48, 72, 96, 120, and 144 h at ?10 °C. Mortality increased with increasing exposure time and was significantly lower for cold‐acclimated larvae. Estimated time until an expected mortality of 50% (LT50) and 90% (LT90) of larvae exposed to ?5 °C was 7.4 and 9.6 days (non‐acclimated) and 11.0 and 15.1 days (acclimated), respectively. Estimated LT50 for non‐acclimated and acclimated larvae exposed to ?10 °C was 32.6 and 70.5 h, respectively, and estimated LT90 66.8 and 132.2 h. Significant differences in mortality between larval stages were observed only at ?5 °C. When exposed to ?5 °C for 8 days, mortality of first and second instars was 81.2 and 51.3%, respectively. When exposed to ?10 °C for 2 days, mortality of first and second instars was 70.5 and 76.1%. Data on winter temperatures in Denmark from 1990 to 2013 showed that larvae were rarely exposed to a number of continuous days at ?5 or ?10 °C causing a potential larval mortality of 50–90%.  相似文献   

18.
J. K. Pell  N. Wilding 《BioControl》1992,37(4):649-654
The survival of three isolates ofZoophthora radicans (NW 250, NW 253 & NW 182) as hyphal bodies in dried larvae ofPlutella xylostella stored at 4, 10 and 20°C and 20% R.H was determined. After storage at 20°C, the production of conidia by all isolates was unaffected after 2 weeks but diminished increasingly after 4 and 8 weeks and was entirely lost after 16 weeks. By comparison conidium production at 10°C was unaffected after 16 weeks (isolates NW 250 and NW 182) and, 24 weeks (NW 253) of storage though it declined rapidly in all isolates thereafter. At 4°C many conidia were produced by all isolates even after 34 weeks of storage. These results are consistent with work on other entomophthoralean fungi in dried cadavers suggesting that this may be a common survival strategy in these fungi. NW 250, 253 and 182 were isolated fromP. xylostella in Malaysia and Taiwan, where conditions allow the host to remain active throughout the year. None produced resting sporesin vivo orin vitro but as hosts are always available the ability to survive short dry periods is probably more important than long-term survival for which resting spores are most adapted.   相似文献   

19.
This study compared different temperatures and dormancy‐reversion procedures for preservation of Phakopsora pachyrhizi uredospores. The storage temperatures tested were room temperature, 5°C, ?20°C and ?80°C. Dehydrated and non‐dehydrated uredospores were used, and evaluations for germination (%) and infectivity (no. of lesions/cm2) were made with fresh harvested spores and after 15, 29, 76, 154 and 231 days of storage. The dormancy‐reversion procedures evaluated were thermal shock (40°C/5 min) followed or not by hydration (moist chamber/24 h). Uredospores stored at room temperature were viable only up to a month of storage, regardless of their hydration condition. Survival of uredospores increased with storage at lower temperatures. Dehydration of uredospores prior to storage increased their viability, mainly for uredospores stored at 5°C, ?20°C and ?80°C. At 5°C and ?20°C, dehydrated uredospores showed increases in viability of at least 47 and 127 days, respectively, compared to non‐dehydrated spores. Uredospore germination and infectivity after storage for 231 days (7.7 months), could only be observed at ?80°C, for both hydration conditions. At this storage temperature, dehydrated and non‐dehydrated uredospores exhibited 56 and 28% of germination at the end of the experiment, respectively. Storage at ?80°C also maintained uredospore infectivity, based upon levels of infection frequency, for both hydration conditions. Among the dormancy‐reversion treatments applied to spores stored at ?80°C, those involving hydration allowed recoveries of 85 to 92% of the initial germination.  相似文献   

20.
Spore suspensions of 15 strains in 15 species of Micromonospora prepared with ultrasonication-technique were tested for resistance to moist heat, acid, alkali, and organic solvents (5 alcohols, 4 ketones and ether). More than 50% spore-survival was found in most organisms heated at 60°C for 20min, but less than 0.5% survived at 80°C. The spore-viability did not change at pH 6 to 8, but decreased beyond this range, and remarkably at acidic pH. A maximum reduction in viability was found with most organic solvents at a concentration of around 80%, and the spores were more resistant to ketone than alcohols and dioxane. Several Streptomyces species were also studied, and their spores were less resistant to heat and organic solvents than those of Micromonospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号