首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

2.
G DasGupta  J White  P Cheung  E Reisler 《Biochemistry》1990,29(36):8503-8508
The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.  相似文献   

3.
Actomyosin interactions in the presence of ATP were examined by using site-specific antibodies directed against the first seven N-terminal residues on skeletal alpha-actin. Fab fragments of these antibodies (S alpha N Fab) inhibited effectively the actin-activated ATPase of myosin subfragment 1 (S-1) at both 5 and 25 degrees C. Binding experiments carried out in the presence of ATP at 5 degrees C revealed that the catalytic inhibition was related to the inhibition of S-1 binding to actin by Fab. At equimolar ratios of Fab to actin, the binding of S-1 to actin and the activated ATPase were inhibited by 75 and 82%, respectively. These results, when contrasted with the small effect of Fab on rigor actomyosin binding, suggest ATP-induced changes at the interface of actin and myosin.  相似文献   

4.
A synthetic peptide corresponding to a sequence 632-642 (S632-642) on the myosin subfragment 1 (S-1) heavy chain and spanning the 50/20 kDa junction of S-1 binds to actin in the presence and absence of S-1. The binding of 1.0 mole of peptide per actin causes almost complete inhibition of actomyosin ATPase activity and only partial inhibition of S-1 binding to actin. The binding of S632-642 to the N-terminal segment of actin is supported by competitive carbodiimide cross-linking of S-1 and S632-642 to actin and the catalytic properties of cross-linked acto-S-1 and actin-peptide complexes. These results show that the sequence 632-642 on S-1 is an autonomous binding site for actin and confirm the catalytic importance of its interactions with the N-terminal segment of actin.  相似文献   

5.
T Chen  D Applegate  E Reisler 《Biochemistry》1985,24(20):5620-5625
Chemical cross-linking of actin to the 20K and 50K fragments of tryptically cleaved myosin subfragment 1 (S-1) by the zero-length cross-linking reagent 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide (EDC) was used as a probe of the acto-S-1 interface in the presence of nucleotides. The course of the two reactions was monitored by measuring on sodium dodecyl sulfate (SDS)-polyacrylamide gels the time-dependent formation of the 20K-actin and 50K-actin cross-linked products. Both reactions were inhibited somewhat in the presence of MgADP, were slowed 3-4-fold in the presence of magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and proceeded at least 7-fold slower with N,N'-p-phenylenedimaleimide (pPDM) modified S-1, as compared to the respective rates in the absence of nucleotides. However, neither the binding of the nucleotides MgADP and MgAMPPNP to S-1 nor the modification of S-1 by pPDM significantly changed the ratio of the cross-linking rates of actin to the 20K and 50K fragments. Similar to what was previously observed in the absence of nucleotides [Chen, T., Applegate, D., & Reisler, E. (1985) Biochemistry 24, 137-144], actin was cross-linked at an approximately 3-fold faster rate to the 20K fragment than to the 50K fragment under all reaction conditions tested. Thus, irrespective of the extent of acto-S-1 dissociation or the binding of nucleotides to acto-S-1, the 20K fragment remains the preferred cross-linking site for actin. These results show that the interaction of actin with each of the cross-linking sites on S-1 is not under selective or preferential control by nucleotides.  相似文献   

6.
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.  相似文献   

7.
E Mushtaq  L E Greene 《Biochemistry》1989,28(15):6478-6482
To elucidate the structure of the cross-bridge intermediates in the actomyosin ATPase cycle, several laboratories have added both ethylene glycol and AMP-PNP to muscle fibers. These studies suggested that ethylene glycol shifts the structure of myosin.AMP-PNP toward the weak-binding conformation, i.e., toward the structure of myosin.ATP. Since only the weak-binding conformation of myosin subfragment 1 (S-1) binds with no apparent cooperativity to the troponin-tropomyosin-actin complex (regulated actin), we used this as a probe to examine the conformation of various S-1.nucleotide complexes in ethylene glycol. Our results show that ethylene glycol markedly weakens the binding strength of S-1, S-1.ADP, and S-1.AMP-PNP to actin but has almost no effect on the binding strength of S-1.ATP. As in muscle fibers, at 40% ethylene glycol, the binding strength of S-1.AMP-PNP to actin becomes very similar to the binding strength of S-1.ATP. In the presence of troponin-tropomyosin, the binding of S-1.AMP-PNP to actin shows no apparent cooperativity in 40% ethylene glycol. Therefore, our results confirm that ethylene glycol shifts the structure of the myosin.AMP-PNP toward the weak-binding conformation. However, our results also suggest that ethylene glycol has a direct effect on the regulated actin complex. This is shown by the fact that ethylene glycol markedly increases the cooperative binding of S-1.ADP to regulated actin both in the presence and in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, we have prepared polyclonal antisera against a synthetic peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (alpha-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the alpha-N-terminal peptide. The alpha-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. Our results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.  相似文献   

9.
In our previous study [Chalovich, J. M., Greene, L. E., & Eisenberg, E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4909-4913], myosin subfragment 1 that was modified by having its two reactive thiol groups cross-linked by N,N'-p-phenylenedimaleimide (pPDM) was found to resemble the myosin subfragment 1-adenosine 5'-triphosphate (S-1.ATP) complex in its interaction with actin. In the present study, we examined the effect of actin on adenosine 5'-diphosphate (ADP) trapped at the active site of pPDM.S-1. Our results indicate first that, in the presence of actin, ADP is no longer trapped at the active site but exchanges rapidly with free nucleotide. Different pPDM.S-1.nucleotide complexes were then formed by exchanging nucleotide into the active site of pPDM.S-1 in the presence of actin. The binding of pPDM.S-1.ATP or pPDM.S-1.PPi to actin is virtually identical with that of unmodified S-1 in the presence of ATP. Specifically, at mu = 18 mM, 25 degrees C, pPDM.S-1.ATP or pPDM.S-1.PPi binds to unregulated actin with the same affinity as does S-1.ATP, and this binding does not appear to be affected by troponin-tropomyosin. On the other hand, pPDM.S-1.ADP and pPDM.S-1 with no bound nucleotide both show a small, but significant, difference between their binding to actin and the binding of S-1.ATP; pPDM.S-1 and pPDM.S-1.ADP both bind about 2- to 3-fold more strongly to unregulated actin than does S-1.ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The binding of caldesmon and its actin-binding fragments to actin was studied by using peptide antibodies directed against two actin sites implicated in actomyosin interactions. Antibodies against residues 1-7 on skeletal alpha-actin strongly inhibited the binding of caldesmon to actin and perturbed to a smaller extent the interaction between actin and the actin binding fragments. Carbodiimide coupling of ethylenediamine to the NH2-terminal acidic residues on actin inhibited the binding of caldesmon and its fragments to actin to a similar extent as the (residues 1-7) antibodies. Antibodies against residues 18-28 showed only limited competition with caldesmon for the binding to actin. These results lead to the following conclusions. (i) The NH2-terminal residues on actin play an important role in the binding of caldesmon to actin, (ii) residues 18-28 on actin do not form a major caldesmon interaction site, and (iii) the actin-binding fragments do not contain the full actin-binding interface. These conclusions and other literature data suggest that caldesmon regulates the actomyosin ATPase by competing with myosin.ATP for the NH2-terminal segment on actin.  相似文献   

11.
To explore the role of a hydrophobic domain of actin in the interaction with a myosin chain we have synthesized a peptide corresponding to residues 75-106 of native actin monomer and studied by fluorescence and ELISA the interaction (13+/-2.6x10(-6) M) with both S-1 and (27 kDa-50 kDa-20 kDa) S-1 trypsin derivative of myosin. The loop corresponding to 96-103 actin residues binds to the S-1 only in the absence of Mg-ATP and under similar conditions but not to the trypsin derivative S-1. Biotinylated C74-K95 and I85-K95 peptide fragments were purified after actin proteolysis with trypsin. The C74-K95 peptide interacted with both S-1 and the S-1 trypsin derivative with an apparent Kd(app) of 6+/-1.2x10(-6) M in the presence or absence of nucleotides. Although peptide fragment I85-K95 binds to S-1 with a Kd(app) of 12+/-2.4x10(-6) M, this fragment did not bind to the trypsin S-1 derivative. We concluded that the actin 85-95 sequence should be a potential binding site to S-1 depending of the conformational state of the intact 70 kDa segment of S-1.  相似文献   

12.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

13.
The N-terminal segment of actin contains a cluster of acidic residues which are implicated in macromolecular interactions of this protein. In this work, the interrelationship between the N-terminal segment and the polymerization of actin was studied by using affinity-purified antibodies directed against the first seven N-terminal residues on alpha-skeletal actin (S alpha N). The Fab fragments of these antibodies showed equal affinities for G- and F-actin while the bivalent IgG bound preferentially to the polymerized actin. As monitored by pyrene fluorescence measurements, the binding of Fab to G-actin did not alter the kinetics of the MgCl2-induced polymerization; IgG accelerated this reaction considerably. Consistent with these observations, the binding of Fab to F-actin did not change its morphological appearance in electron micrographs and had no effect on the stability and the rate of dissociation of actin filaments. These results are discussed in terms of their implications to the spatial relationship between the N-terminal segment and the rest of the molecule and the context of the polymerization reaction of actin in vitro and in vivo.  相似文献   

14.
To assess the significance of the NH2-terminus of actin for cross-bridge action in muscle, skinned fibers of rabbit psoas muscle were equilibrated with Fab fragments of antibodies directed against the first seven N-terminal residues of actin. With the antibody fragment, active force is more inhibited than relaxed fiber stiffness, or stiffness in rigor or in the presence of magnesium pyrophosphate. Inhibition of stiffness in rigor or with magnesium pyrophosphate does not necessarily indicate involvement of the NH2-terminus of actin in strong cross bridge binding to actin but may simply result from the large size of the Fab. At high Fab concentrations, active force is essentially abolished, whereas stiffness is still detectible under all conditions. Thus, complete inhibition of active force apparently is not due to interference with cross-bridge binding to actin but may result from the Fab-mimicking inhibition of the thin filament by Troponin-1 binding to the NH2-terminus of actin at low Ca2+. However, although Troponin-1 is released from the NH2-terminus at high Ca2+, the Fab is not, thus disallowing force generation upon increase in Ca2+. These data are consistent with involvement of the NH2-terminus of actin in both weak cross-bridge binding to actin and Ca2+ regulation of the thin filament.  相似文献   

15.
The initial rates of tryptic digestion at the 50/20-kDa junction in myosin subfragment 1 (S-1) were determined for free S-1, acto-S-1, and acto-S-1 in the presence of magnesium adenyl-5'-yl imidodiphosphate (Mg AMP-PNP) and MgATP under ionic strength conditions ranging from 30 to 124 mM. The percentage of S-1 bound to actin in the presence of Mg AMP-PNP and MgATP was calculated from these rates for each set of digestion experiments. Parallel experiments carried out in an Airfuge centrifuge on identical acto-S-1 solutions yielded independent information on the binding of S-1 to actin. The results of binding measurements by these two methods were in excellent agreement in all cases tested, covering the range from 15 to 95% binding of S-1 to actin. Tryptic digestions of synthetic mixtures of S-1 and p-phenylenedimaleimide S-1 in the presence of actin demonstrated that a two-component system of myosin heads with different affinities for actin can be resolved into its constituents by the proteolytic rates method. The results of this work justify applications of the proteolytic rates method to actomyosin binding studies in more complex systems.  相似文献   

16.
The role of the N-terminal region of myosin light chain 1 (LC1) in actomyosin interaction was investigated using an IgG monoclonal antibody (2H2) directed against the N-terminal region of LC1. We defined the binding site of 2H2 by examining its cross-reactivity with myosin light chains from a variety of species and with synthetic oligopeptides. Our findings suggest that 2H2 is directed against the N-terminal region of LC1 which includes the trimethylated alanine residue at the N-terminus. In the presence of 2H2, the rate of actomyosin superprecipitation was reduced, although the extent was not. 2H2 caused a reduction in the Vmax of both myosin and chymotryptic S1(A1) actin-activated ATPase activity, while the Km appeared to be unaltered. The Mg(2+)-ATPase activity of myosin alone was also unaffected. Binding studies revealed that 2H2 did not prevent the formation of acto-S1 complex, either in the presence or in the absence of ATP, nor did it affect the ability of ATP to dissociate S1 from F-actin. Our findings suggest that the N-terminal region of LC1 is not essential for actin binding but is involved in modulating actin-activated ATPase activity of myosin.  相似文献   

17.
The negatively charged residues in the N-terminus of actin and the 697-707 region on myosin subfragment 1 (S-1), containing the reactive cysteines SH1 and SH2, are known to be important for actin-activated myosin ATPase activity. The relationship between these two sites was first examined by monitoring the rates of SH1 and SH2 modification with N-ethylmaleimide in the presence of actin and, secondly, by testing for direct binding of SH1 peptides to the N-terminal segment on actin. While actin alone protected SH1 from N-ethylmaleimide modification, this effect was abolished by an antibody against the seven N-terminal amino acids on actin, F(ab)(1-7), and was greatly reduced when the charge of acidic residues at actin's N-terminus was altered by carbodiimide coupling of ethylenediamine. Neither F(ab)(1-7) nor ethylenediamine treatment reversed the effect of F-actin on SH2 reactivity in SH1-modified S-1. These results show a communication between the SH1 region on S-1 and actin's N-terminus in the acto-S-1 complex. To test whether such a communication involves the binding of the SH1 site on S-1 to the N-terminal segment of actin, the SH1 peptide IRICRKG-NH2(4+) was used. Cosedimentation experiments revealed the binding of three to six peptides per actin monomer. Peptide binding to actin was affected slightly, if at all, by F(ab)(1-7). The antibody also did not change the polymerization of G-actin by the peptides. The peptides caused a small reduction in the binding of S-1 to actin and did not change the binding of F(ab)(1-7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
R T King  L E Greene 《Biochemistry》1985,24(24):7009-7014
Chalovich and Eisenberg [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437] have suggested that at low ionic strength, troponin-tropomyosin regulates the actomyosin ATPase activity by inhibiting a kinetic step in the actomyosin ATPase cycle rather than by blocking the binding of myosin subfragment 1 (S-1) to actin. This leads to the prediction that troponin-tropomyosin should inhibit the ATPase activity of the complex of actin and S-1 (acto . S-1) even when S-1 is cross-linked to actin. We now find that the ATPase activity of cross-linked actin . S-1 prepared under milder conditions than those used by Mornet et al. [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306] is inhibited 90% by troponin-tropomyosin in the absence of Ca2+. At mu = 18 mM, 25 degrees C, the ATPase activity of this cross-linked preparation is only about 2-fold greater than the maximal actin-activated ATPase activity of S-1 obtained with regulated actin in the absence of Ca2+. At physiological ionic strength, the ATPase activity of this cross-linked actin . S-1 preparation is inhibited about 95% by troponin-tropomyosin. Since cross-linked S-1 behaves kinetically like S-1 in the presence of infinite actin concentration, it is very unlikely that inhibition of the ATPase activity of cross-linked actin . S-1 is due to blocking of the binding of S-1 to actin. Therefore, these results are in agreement with the suggestion that troponin-tropomyosin regulates primarily by inhibiting a kinetic step in the ATPase cycle.  相似文献   

19.
The effect of caldesmon (CaD) on conformational changes in F-actin modified by fluorescent probe TRITC-phalloidin was investigated by polarized fluorimetry. Changes were induced by a subfragment-1 (S-1) of myosin in the absence or presence of CaD in ghost muscle fibers obtained from intact and denervated slow (SOL) and fast (EDL) skeletal muscles of rats. S-1 binding to actin of both SOL and EDL muscles was shown to cause changes in polarized parameters of TRITC-phalloidin typical for a strong actin-myosin binding as well as of transition ofactin subunits from "off" to "on" state. CaD inhibits this significantly. Denervation atrophy inhibits the effect of S-1 as well but does not affect the capability of CaD decreasing the formation of strong binding in actomyosin complex. It is supposed that CaD "freezes" F-actin structure in "off" state. The denervation atrophy has no effect on CaD responsibility to bind thin filaments and to switch "off" actin monomers.  相似文献   

20.
The effects of selected nucleotides (N) on the binding of myosin subfragment 1 (S-1) and pure F-actin (A) were measured by time-resolved fluorescence depolarization for 0.15 M KCl, pH 7.0 at 4 degrees. The association constants K'A, KN, and K'N in the scheme (see article), were determined for the magnesium salts of ADP, adenyl-5'-yl imidodiphosphate AMP-P(NH)P, and PPi. The nucleotide binding site on S-1 was "mapped" with respect to its interaction on the actin binding site. The subsites were the beta- and gamma-phosphoryl groups of ATP bind had the largest effects. A quantitative measure of the interaction, the interaction free energy, was defined as -RT ln (KA/K'A). For ADP, K'A was 2.7 X 10(5) M-1 and the interaction free energy was -4.67 kJ M-1. For AMP-P(NH)P and PPi it was much larger. A ternary complex was shown to exist for ADP, S-1, and actin in the presence of Mg2+ and evidence from AMP-P(NH)P and PPi measurements indicated that ATP also likely forms a ternary complex. The mechanism of (S-1)-actin dissociation is discussed in light of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号